PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1038.
Published online 2008 May 10. doi:  10.1107/S160053680801324X
PMCID: PMC2961484

(E)-1-(4-Chloro­phen­yl)-3-(4-methyl­phen­yl)prop-2-en-1-one

Abstract

The title compound, C16H13ClO, adopts an E configuration with respect to the C=C double bond of the propenone unit. The dihedral angle between the two benzene rings is 45.9 (2)°. In the crystal structure, mol­ecules are arranged into sheets parallel to the ac plane and the sheets are stacked along the b axis. This arrangement is stabilized by weak inter­molecular C—H(...)π inter­actions involving both aromatic rings.

Related literature

For applications of chalcones in non-linear optics, see: Agrinskaya et al. (1999 [triangle]). For related structures, see: Patil, Dharmaprakash et al. (2007 [triangle]); Patil, Fun et al. (2007 [triangle]); Patil, Rosli et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1038-scheme1.jpg

Experimental

Crystal data

  • C16H13ClO
  • M r = 256.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1038-efi1.jpg
  • a = 15.2632 (3) Å
  • b = 14.0146 (3) Å
  • c = 5.8487 (1) Å
  • β = 92.154 (1)°
  • V = 1250.20 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 100.0 (1) K
  • 0.34 × 0.18 × 0.05 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.908, T max = 0.986
  • 15494 measured reflections
  • 3661 independent reflections
  • 2534 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.129
  • S = 1.04
  • 3661 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801324X/ci2595sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801324X/ci2595Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship. PSP thanks the DRDO, Government of India, for a Senior Research Fellowship (SRF). This work was also supported by the Department of Science and Technology (DST), Government of India, grant No. SR/S2/LOP-17/2006.

supplementary crystallographic information

Comment

Recently, significant progress has been achieved in the growth of noncentrosymmetric crystals for second harmonic generation (SHG), mostly that of chalcone derivatives substituted with different donor/acceptor substituents (Agrinskaya et al., 1999; Patil, Dharmaprakash et al., 2007; Patil, Fun et al., 2007; Patil, Rosli et al., 2007). Herein we report the crystal structure of the title compound.

The title molecule (Fig.1) exhibits an E configuration with respect to the C8?C9 double bond, with the C7—C8—C9—C10 torsion angle being -175.3 (2)°. The bond lengths and angles are comparable to those observed in related structures (Patil, Dharmaprakash et al., 2007; Patil, Fun et al., 2007; Patil, Rosli et al., 2007). The dihedral angle between the two benzene rings is 45.9 (1)°.

In the molecular structure, an intramolecular C—H···O hydrogen bond generates an S(5) ring motif. In the crystal structure, the molecules are arranged into sheets parallel to the ac plane and the sheets are stacked along the b axis (Fig. 2). This arrangement is stabilized by weak intermolecular C—H···π interactions involving both aromatic rings, Table 1.

Experimental

The title compound was synthesized by the condensation of p-tolualdehyde (0.01 mol) with 4-chloroacetophenone (0.01 mol) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring for 6 h, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 12 h. The resulting crude solid was filtered and dried. Single crystals suitable for X-ray diffraction were grown by slow evaporation of an acetone solution at room temperature.

Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å for aromatic H and 0.96 Å for methyl H atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for the methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating-group model was used for the methyl group.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bond is shown as a dashed line.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C16H13ClOF000 = 536
Mr = 256.71Dx = 1.364 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2431 reflections
a = 15.2632 (3) Åθ = 2.7–29.9º
b = 14.0146 (3) ŵ = 0.29 mm1
c = 5.8487 (1) ÅT = 100.0 (1) K
β = 92.154 (1)ºPlate, colourless
V = 1250.20 (4) Å30.34 × 0.18 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3661 independent reflections
Radiation source: fine-focus sealed tube2534 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.055
T = 100.0(1) Kθmax = 30.1º
[var phi] and ω scansθmin = 1.3º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −21→21
Tmin = 0.908, Tmax = 0.986k = −19→19
15494 measured reflectionsl = −6→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.129  w = 1/[σ2(Fo2) + (0.0438P)2 + 0.9337P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3661 reflectionsΔρmax = 0.41 e Å3
164 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.37993 (3)0.37197 (4)0.72301 (10)0.02546 (15)
O10.01956 (10)0.38013 (12)0.3019 (2)0.0258 (4)
C1−0.12084 (13)0.40835 (14)0.7779 (3)0.0177 (4)
H1−0.07970.42950.88780.021*
C2−0.20925 (13)0.40915 (14)0.8251 (3)0.0178 (4)
H2−0.22790.43220.96430.021*
C3−0.26921 (13)0.37513 (14)0.6615 (3)0.0178 (4)
C4−0.24374 (13)0.34215 (14)0.4505 (4)0.0192 (4)
H4−0.28500.31960.34250.023*
C5−0.15563 (13)0.34352 (14)0.4044 (3)0.0178 (4)
H5−0.13750.32250.26300.021*
C6−0.09327 (12)0.37615 (14)0.5676 (3)0.0166 (4)
C70.00093 (13)0.37789 (14)0.5041 (4)0.0183 (4)
C80.06927 (13)0.37523 (15)0.6898 (3)0.0190 (4)
H80.05410.35960.83770.023*
C90.15291 (13)0.39512 (14)0.6470 (3)0.0170 (4)
H90.16410.41500.49920.020*
C100.22861 (13)0.38904 (13)0.8071 (3)0.0160 (4)
C110.31013 (13)0.42159 (14)0.7374 (3)0.0172 (4)
H110.31440.44940.59390.021*
C120.38450 (13)0.41295 (14)0.8791 (4)0.0187 (4)
H120.43780.43580.82990.022*
C130.38079 (13)0.37070 (14)1.0938 (3)0.0180 (4)
C140.29931 (13)0.33856 (14)1.1634 (3)0.0174 (4)
H140.29530.31011.30630.021*
C150.22434 (13)0.34813 (14)1.0242 (3)0.0167 (4)
H150.17080.32711.07570.020*
C160.46114 (13)0.35970 (16)1.2478 (4)0.0241 (5)
H16A0.51170.35231.15670.036*
H16B0.45490.30441.34280.036*
H16C0.46820.41531.34250.036*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0154 (2)0.0311 (3)0.0299 (3)0.0011 (2)0.00166 (19)−0.0017 (2)
O10.0214 (7)0.0393 (9)0.0169 (8)−0.0012 (7)0.0016 (6)0.0010 (7)
C10.0183 (9)0.0173 (9)0.0171 (10)−0.0015 (8)−0.0029 (8)0.0006 (8)
C20.0194 (9)0.0177 (10)0.0162 (10)0.0015 (8)0.0004 (8)−0.0004 (8)
C30.0154 (9)0.0166 (9)0.0214 (10)0.0007 (8)0.0010 (8)0.0031 (8)
C40.0195 (10)0.0183 (10)0.0195 (10)0.0000 (8)−0.0047 (8)−0.0006 (8)
C50.0214 (10)0.0171 (9)0.0148 (10)0.0022 (8)−0.0013 (8)−0.0002 (8)
C60.0161 (9)0.0150 (9)0.0185 (10)0.0014 (8)−0.0011 (7)0.0032 (8)
C70.0179 (9)0.0178 (9)0.0192 (10)0.0005 (8)0.0009 (8)−0.0001 (8)
C80.0196 (10)0.0214 (10)0.0161 (10)0.0019 (8)0.0004 (8)0.0023 (8)
C90.0194 (9)0.0165 (10)0.0152 (10)0.0023 (8)0.0017 (8)0.0010 (8)
C100.0162 (9)0.0147 (9)0.0171 (10)0.0035 (7)0.0013 (7)−0.0015 (8)
C110.0205 (10)0.0168 (10)0.0144 (10)0.0018 (8)0.0022 (8)0.0012 (8)
C120.0153 (9)0.0197 (10)0.0212 (11)−0.0007 (8)0.0037 (8)0.0010 (8)
C130.0171 (9)0.0177 (9)0.0191 (10)0.0012 (8)−0.0012 (8)−0.0021 (8)
C140.0207 (10)0.0185 (10)0.0129 (9)−0.0004 (8)0.0010 (8)0.0006 (8)
C150.0160 (9)0.0167 (10)0.0175 (10)−0.0010 (8)0.0033 (8)−0.0018 (8)
C160.0175 (10)0.0309 (12)0.0235 (11)0.0004 (9)−0.0030 (8)0.0027 (9)

Geometric parameters (Å, °)

Cl1—C31.742 (2)C9—C101.462 (3)
O1—C71.227 (2)C9—H90.93
C1—C21.388 (3)C10—C151.397 (3)
C1—C61.390 (3)C10—C111.400 (3)
C1—H10.93C11—C121.385 (3)
C2—C31.384 (3)C11—H110.93
C2—H20.93C12—C131.391 (3)
C3—C41.387 (3)C12—H120.93
C4—C51.382 (3)C13—C141.397 (3)
C4—H40.93C13—C161.502 (3)
C5—C61.399 (3)C14—C151.386 (3)
C5—H50.93C14—H140.93
C6—C71.499 (3)C15—H150.93
C7—C81.478 (3)C16—H16A0.96
C8—C91.340 (3)C16—H16B0.96
C8—H80.93C16—H16C0.96
C2—C1—C6120.50 (19)C10—C9—H9116.4
C2—C1—H1119.7C15—C10—C11118.07 (18)
C6—C1—H1119.7C15—C10—C9122.91 (18)
C3—C2—C1118.86 (19)C11—C10—C9118.95 (18)
C3—C2—H2120.6C12—C11—C10120.97 (18)
C1—C2—H2120.6C12—C11—H11119.5
C2—C3—C4122.00 (18)C10—C11—H11119.5
C2—C3—Cl1119.19 (16)C11—C12—C13121.12 (19)
C4—C3—Cl1118.81 (15)C11—C12—H12119.4
C5—C4—C3118.44 (19)C13—C12—H12119.4
C5—C4—H4120.8C12—C13—C14117.82 (18)
C3—C4—H4120.8C12—C13—C16121.66 (18)
C4—C5—C6120.91 (19)C14—C13—C16120.52 (18)
C4—C5—H5119.5C15—C14—C13121.47 (19)
C6—C5—H5119.5C15—C14—H14119.3
C1—C6—C5119.27 (18)C13—C14—H14119.3
C1—C6—C7122.63 (18)C14—C15—C10120.54 (18)
C5—C6—C7118.07 (18)C14—C15—H15119.7
O1—C7—C8121.77 (18)C10—C15—H15119.7
O1—C7—C6119.90 (18)C13—C16—H16A109.5
C8—C7—C6118.32 (18)C13—C16—H16B109.5
C9—C8—C7120.57 (19)H16A—C16—H16B109.5
C9—C8—H8119.7C13—C16—H16C109.5
C7—C8—H8119.7H16A—C16—H16C109.5
C8—C9—C10127.16 (19)H16B—C16—H16C109.5
C8—C9—H9116.4
C6—C1—C2—C31.6 (3)C6—C7—C8—C9−166.97 (19)
C1—C2—C3—C4−1.3 (3)C7—C8—C9—C10−175.30 (19)
C1—C2—C3—Cl1177.78 (15)C8—C9—C10—C159.1 (3)
C2—C3—C4—C50.1 (3)C8—C9—C10—C11−173.9 (2)
Cl1—C3—C4—C5−179.00 (15)C15—C10—C11—C120.4 (3)
C3—C4—C5—C60.9 (3)C9—C10—C11—C12−176.80 (18)
C2—C1—C6—C5−0.7 (3)C10—C11—C12—C130.8 (3)
C2—C1—C6—C7177.19 (18)C11—C12—C13—C14−1.0 (3)
C4—C5—C6—C1−0.6 (3)C11—C12—C13—C16179.17 (19)
C4—C5—C6—C7−178.54 (18)C12—C13—C14—C150.0 (3)
C1—C6—C7—O1−155.5 (2)C16—C13—C14—C15179.90 (19)
C5—C6—C7—O122.4 (3)C13—C14—C15—C101.1 (3)
C1—C6—C7—C825.5 (3)C11—C10—C15—C14−1.3 (3)
C5—C6—C7—C8−156.65 (18)C9—C10—C15—C14175.76 (18)
O1—C7—C8—C914.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9···O10.932.502.820 (2)100
C5—H5···Cg1i0.932.983.525119
C2—H2···Cg2ii0.932.933.563127
C14—H14···Cg2iii0.932.803.495132

Symmetry codes: (i) x, −y−1/2, z−3/2; (ii) −x, −y, −z+1; (iii) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2595).

References

  • Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.
  • Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.
  • Patil, P. S., Rosli, M. M., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o3238.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography