PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m768.
Published online 2008 May 3. doi:  10.1107/S1600536808010106
PMCID: PMC2961478

Diaqua­[5-(2-pyrid­yl)tetra­zolato-κ2 N 1,N 5]manganese(II)

Abstract

The title compound, [Mn(C6H4N5)2(H2O)2], was synthesized by the hydro­thermal reaction of Mn(NO3)2 with picolino­nitrile in the presence of NaN3. The Mn atom lies on an inversion centre. The distorted octa­hedral Mn environment contains two planar trans-related N,N′-chelating 5-(2-pyrid­yl)­tetra­zolate ligands in the equatorial plane and two axial water mol­ecules. O—H(...)N hydrogen bonds generate an infinite three-dimensional network.

Related literature

For the chemisty of tetra­zole, see: Arp et al. (2000 [triangle]); Dunica et al. (1991 [triangle]); Wang et al. (2005 [triangle]); Wittenberger & Donner (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m768-scheme1.jpg

Experimental

Crystal data

  • [Mn(C6H4N5)2(H2O)2]
  • M r = 383.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m768-efi1.jpg
  • a = 6.185 (3) Å
  • b = 12.110 (7) Å
  • c = 10.615 (5) Å
  • β = 106.597 (12)°
  • V = 761.9 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.90 mm−1
  • T = 293 (2) K
  • 0.5 × 0.5 × 0.4 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.638, T max = 0.695
  • 7656 measured reflections
  • 1803 independent reflections
  • 1660 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.071
  • S = 1.10
  • 1803 reflections
  • 115 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP3 (Farrugia, 1997 [triangle]) and SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010106/dn2338sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010106/dn2338Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

The tetrazole functional group has found a wide range of applications in coordination chemistry as ligands, in medicinal chemistry as a metabolically stable surrogate for a carboxylic acid group, and in materials science as high density energy materials(Wang et al., 2005; Dunica et al., 1991; Wittenberger & Donner, 1993). We report here the crystal structure of the title compound, 5-(2-pyridyl)tetrazolate-Manganese(II) dihydrate.

The Mn atom lies on an inversion centre. The distorted octahedral Mn environment contains two planar trans-related N,N-chelating 5-(2-pyridyl)tetrazolate ligands in the equatorial plane and two water molecules ligands. The pyridine and tetrazole rings are nearly coplanar and are twisted from each other by a dihedral angle of only 4.02 (0.09) °(Fig.1). The bond distances and bond angles of the tetrazole rings are in the usual ranges (Wang et al., 2005; Arp et al., 2000).

The O atoms from water molecules are involved in intermolecular hydrogen bonds building up an infinite three-dimensional network(Table 1, Fig. 2).

Experimental

A mixture of picolinonitrile (0.2 mmol), NaN3 (0.4 mmol), Mn(NO3)2(0.15 mmol) ethanol (1 ml) and a few drops of water sealed in a glass tube was maintained at 120 °C. Yellow block crystals suitable for X-ray analysis were obtained after 3 days.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.49 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement they were treated as riding on the O atom.

Figures

Fig. 1.
Molecular view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry code : (i) 1-x, 1-y, 1-z]
Fig. 2.
The crystal packing of the title compound viewed along the a axis showing the three dimensionnal hydrogen bondings network (dashed line). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

[Mn(C6H4N5)2(H2O)2]F000 = 390
Mr = 383.26Dx = 1.671 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2090 reflections
a = 6.185 (3) Åθ = 3.8–27.5º
b = 12.110 (7) ŵ = 0.90 mm1
c = 10.615 (5) ÅT = 293 (2) K
β = 106.597 (12)ºBlock, yellow
V = 761.9 (7) Å30.5 × 0.5 × 0.4 mm
Z = 2

Data collection

Rigaku Mercury2 (2x2 bin mode) diffractometer1803 independent reflections
Radiation source: fine-focus sealed tube1660 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
Detector resolution: 13.6612 pixels mm-1θmax = 27.9º
T = 293(2) Kθmin = 2.6º
ω scansh = −8→8
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)k = −15→15
Tmin = 0.638, Tmax = 0.695l = −13→13
7656 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.071  w = 1/[σ2(Fo2) + (0.0346P)2 + 0.2477P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
1803 reflectionsΔρmax = 0.26 e Å3
115 parametersΔρmin = −0.30 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2334 (2)0.69220 (11)0.35475 (13)0.0241 (3)
C20.4533 (2)0.74376 (11)0.41494 (13)0.0244 (3)
C30.4930 (3)0.85522 (12)0.40133 (15)0.0344 (3)
H30.37990.90080.35110.041*
C40.7043 (3)0.89713 (13)0.46408 (17)0.0412 (4)
H40.73490.97170.45690.049*
C50.8696 (3)0.82755 (14)0.53750 (16)0.0393 (4)
H51.01210.85440.58140.047*
C60.8179 (2)0.71703 (13)0.54410 (15)0.0325 (3)
H60.92990.66980.59210.039*
Mn10.50000.50000.50000.02576 (11)
N10.61452 (19)0.67490 (9)0.48475 (11)0.0255 (2)
N20.19348 (18)0.58625 (9)0.37478 (12)0.0275 (2)
N3−0.0219 (2)0.56898 (11)0.30475 (13)0.0338 (3)
N4−0.1061 (2)0.66105 (11)0.24559 (13)0.0368 (3)
N50.0515 (2)0.74084 (10)0.27584 (12)0.0318 (3)
O1W0.58488 (19)0.45145 (9)0.32058 (11)0.0393 (3)
H1W0.55100.38580.29050.059*
H2W0.70960.47750.31510.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0229 (6)0.0215 (6)0.0268 (6)0.0016 (5)0.0055 (5)0.0021 (5)
C20.0237 (6)0.0221 (6)0.0267 (6)−0.0007 (5)0.0059 (5)0.0014 (5)
C30.0350 (7)0.0238 (7)0.0409 (8)−0.0016 (6)0.0050 (6)0.0051 (6)
C40.0445 (9)0.0267 (7)0.0491 (9)−0.0124 (6)0.0082 (7)0.0013 (6)
C50.0299 (7)0.0422 (9)0.0407 (8)−0.0135 (6)0.0019 (6)−0.0014 (7)
C60.0243 (6)0.0366 (8)0.0327 (7)−0.0011 (6)0.0020 (5)0.0024 (6)
Mn10.02613 (16)0.01760 (16)0.03133 (17)0.00182 (10)0.00463 (12)0.00246 (10)
N10.0235 (5)0.0237 (5)0.0277 (5)0.0000 (4)0.0047 (4)0.0021 (4)
N20.0222 (5)0.0227 (6)0.0342 (6)−0.0018 (4)0.0026 (5)0.0001 (4)
N30.0239 (6)0.0332 (7)0.0400 (7)−0.0042 (5)0.0023 (5)−0.0009 (5)
N40.0246 (6)0.0402 (7)0.0407 (7)−0.0016 (5)0.0012 (5)0.0044 (6)
N50.0240 (6)0.0316 (6)0.0363 (6)0.0023 (5)0.0029 (5)0.0075 (5)
O1W0.0422 (6)0.0340 (6)0.0472 (6)−0.0123 (5)0.0213 (5)−0.0121 (5)

Geometric parameters (Å, °)

C1—N51.3325 (17)C6—H60.9300
C1—N21.3350 (18)Mn1—O1Wi2.1954 (14)
C1—C21.4670 (19)Mn1—O1W2.1954 (14)
C2—N11.3478 (17)Mn1—N2i2.2388 (14)
C2—C31.387 (2)Mn1—N22.2388 (14)
C3—C41.383 (2)Mn1—N1i2.2538 (16)
C3—H30.9300Mn1—N12.2538 (16)
C4—C51.381 (2)N2—N31.3438 (17)
C4—H40.9300N3—N41.3122 (19)
C5—C61.382 (2)N4—N51.3449 (18)
C5—H50.9300O1W—H1W0.8597
C6—N11.3367 (18)O1W—H2W0.8507
N5—C1—N2111.33 (12)N2i—Mn1—N2180.0
N5—C1—C2126.65 (12)O1Wi—Mn1—N1i91.80 (5)
N2—C1—C2122.03 (11)O1W—Mn1—N1i88.20 (5)
N1—C2—C3122.30 (13)N2i—Mn1—N1i75.47 (5)
N1—C2—C1115.11 (12)N2—Mn1—N1i104.53 (5)
C3—C2—C1122.59 (12)O1Wi—Mn1—N188.20 (5)
C4—C3—C2118.56 (14)O1W—Mn1—N191.80 (5)
C4—C3—H3120.7N2i—Mn1—N1104.53 (5)
C2—C3—H3120.7N2—Mn1—N175.47 (5)
C5—C4—C3119.57 (14)N1i—Mn1—N1180.0
C5—C4—H4120.2C6—N1—C2118.14 (12)
C3—C4—H4120.2C6—N1—Mn1126.70 (10)
C4—C5—C6118.32 (14)C2—N1—Mn1115.00 (9)
C4—C5—H5120.8C1—N2—N3105.11 (11)
C6—C5—H5120.8C1—N2—Mn1112.29 (9)
N1—C6—C5123.09 (14)N3—N2—Mn1142.51 (9)
N1—C6—H6118.5N4—N3—N2109.13 (12)
C5—C6—H6118.5N3—N4—N5109.55 (12)
O1Wi—Mn1—O1W180.0C1—N5—N4104.88 (12)
O1Wi—Mn1—N2i88.95 (5)Mn1—O1W—H1W118.4
O1W—Mn1—N2i91.05 (5)Mn1—O1W—H2W114.0
O1Wi—Mn1—N291.05 (5)H1W—O1W—H2W116.5
O1W—Mn1—N288.95 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2W···N3ii0.852.032.864 (2)169
O1W—H1W···N5iii0.861.932.788 (2)175

Symmetry codes: (ii) x+1, y, z; (iii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2338).

References

  • Arp, H. P. H., Decken, A., Passmore, J. & Wood, D. J. (2000). Inorg. Chem.39, 1840–1848. [PubMed]
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Dunica, J. V., Pierce, M. E. & Santella, J. B. III (1991). J. Org. Chem.56, 2395–2400.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem.44, 5278–5285. [PubMed]
  • Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem.58, 4139–4141.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography