PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): i37.
Published online 2008 May 21. doi:  10.1107/S1600536808014785
PMCID: PMC2961477

Redetermination of tricalcium trilanthanum penta­kis(ortho­borate) from single-crystal data

Abstract

Single crystals of the title compound, Ca3La3(BO3)5, were obtained by spontaneous nucleation from a high-temperature melt. The crystal structure of Ca3La3(BO3)5 has been determined previously from X-ray powder data [Zhang, Liang, Chen, He & Xu (2001). J. Alloys Compd, 327, 96–99]. The present refinement shows a significant improvement in terms of the precision of the geometric parameters and the correct determination of the absolute configuration in space group P63 mc with all atoms refined with anisotropic displacement parameters. The structure consists of isolated BO3 triangles and distorted [CaO8] and [LaO10] polyhedra. Except for one O atom, all other atoms are situated on special positions: La, all O and one B atom on mirror planes, and two B atoms with site symmetry 3m.

Related literature

For phase equilibria in the system La2O3—CaO—B2O3, see: Zhang et al. (2001a [triangle]). For a previous structure analysis of Ca3La3(BO3)5 based on X-ray powder diffraction data, see: Zhang et al. (2001b [triangle]). For non-linear optical (NLO) applications of borate crystals containing triangular BO3 anions, see: Chen et al. (1999 [triangle]). For a review of the geometry of the BO3 group, see: Zobetz (1982 [triangle]). For the potential applications of Ca3La3(BO3)5 for photoluminescence, see: Zhang et al. (2005 [triangle]); Han et al. (2007 [triangle]).

Experimental

Crystal data

  • Ca3La3(BO3)5
  • M r = 831.02
  • Hexagonal, An external file that holds a picture, illustration, etc.
Object name is e-64-00i37-efi1.jpg
  • a = 10.530 (3) Å
  • c = 6.398 (2) Å
  • V = 614.4 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 11.59 mm−1
  • T = 293 (2) K
  • 0.22 × 0.12 × 0.10 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000 [triangle]) T min = 0.206, T max = 0.304
  • 4065 measured reflections
  • 534 independent reflections
  • 534 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.012
  • wR(F 2) = 0.030
  • S = 0.89
  • 534 reflections
  • 53 parameters
  • 1 restraint
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.59 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 236 Friedel pairs
  • Flack parameter: −0.03 (3)

Data collection: CrystalClear (Rigaku, 2000 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2004 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014785/wm2179sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014785/wm2179Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the National Science Found­ation of China (grant No. 60608018).

supplementary crystallographic information

Comment

Borate crystals containing parallel aligned BO3 anions are predicted to have large nonlinear optical (NLO) coefficients, moderate birefringence and wide transparency in the UV-region. Therefore they are considered to be good candidates for NLO applications (Chen, 1999). The title compound Ca3La3(BO3)5, (I), has been investigated previously by Zhang et al. (2001a) during analysis of phase equilibria in the system La2O3—CaO—B2O3, and NLO and luminescent properties of this material have also been reported (Zhang, 2005; Han, 2007). The crystal structure of Ca3La3 (BO3)5 was originally determined from X-ray powder diffraction data in conjunction with IR spectroscopy (Zhang et al., 2001b).

The structure of compound (I) can be described in terms of BO3 triangles and complex irregular [CaO8] and [LaO10] polyhedra. Each of the three crystallographically different B atoms is coordinated to three O atoms to form planar BO3 triangles. The B—O bond lengths range from 1.384 (3) to 1.389 (3) Å, which is in good agreement with the results of geometric studies of the BO3 unit (Zobetz, 1982). Two of the three BO3 groups exhibit 3m symmetry, and the third BO3 group has m symmetry with O–B–O angles very close to 120°. The La3+ cations are 10-fold coordinated by oxygen atoms with La—O bond lengths ranging from 2.501 (2) to 2.812 (2) Å. The [LaO10] polyhedra are connected to each other and to the borate groups by sharing corners and edges forming a three-dimensional network with channels running parallel to [001]. In these channels the Ca2+ cations are situated and are surrounded by eight oxygen atoms with Ca—O bond lengths ranging from 2.3139 (13) to 2.662 (3) Å (Table 1).

Experimental

Single crystals of compound (I) were grown using a LiBO2-containing flux. The composition of the mixture for crystal growth was 1:1:4:3 of CaCO3 (Sinopharm Regent, AR), La2O3 (Materials, 99.8%), H3BO3 (Sinopharm Regent, 99.99%), and Li2CO3 (Sinopharm Reagent, AR). The mixture was heated in a platinum crucible to 1373 K, held at this temperature for several hours, and then cooled at a rate of 10 K/h from 1373 to 873 K. The remaining solified flux attached to the crystals was readily dissolved in water. Crystals with an average size of 0.5 mm and mostly rod shaped habit were obtained.

Refinement

The present study confirms the basic structural features determined from the previous investigation by Zhang et al. (2001b) with a much higher precesion and with all displacement parameters refined anisotropically.

Figures

Fig. 1.
The structure of (I) in a projection approximatly along the [001] direction with displacement ellipsoids drawn at the 85% probability level.
Fig. 2.
Packing diagram of the structure of (I). [CaO8] polyhedra are yellow, [LaO10] polyhedra are blue and [BO3] units are green.

Crystal data

Ca3La3(BO3)5Z = 2
Mr = 831.02F000 = 752
Hexagonal, P63mcDx = 4.492 Mg m3
Hall symbol: P 6c -2cMo Kα radiation λ = 0.71073 Å
a = 10.530 (3) ÅCell parameters from 1909 reflections
b = 10.530 (3) Åθ = 2.2–27.5º
c = 6.398 (2) ŵ = 11.59 mm1
α = 90ºT = 293 (2) K
β = 90ºRod, colourless
γ = 120º0.22 × 0.12 × 0.10 mm
V = 614.4 (3) Å3

Data collection

Rigaku Mercury CCD diffractometer534 independent reflections
Radiation source: Sealed Tube534 reflections with I > 2σ(I)
Monochromator: Graphite MonochromatorRint = 0.035
Detector resolution: 14.6306 pixels mm-1θmax = 27.5º
T = 293(1) Kθmin = 2.2º
CCD_Profile_fitting scansh = −13→13
Absorption correction: multi-scan(CrystalClear; Rigaku, 2000)k = −13→13
Tmin = 0.206, Tmax = 0.304l = −8→7
4065 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.02P)2 + 1.5843P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.012(Δ/σ)max < 0.001
wR(F2) = 0.030Δρmax = 0.41 e Å3
S = 0.89Δρmin = −0.59 e Å3
534 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
53 parametersExtinction coefficient: 0.0632 (12)
1 restraintAbsolute structure: Flack (1983), 236 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.03 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ca10.47334 (5)0.52666 (5)0.76261 (15)0.00673 (19)
La10.156065 (12)0.843935 (12)0.08229 (8)0.00493 (11)
B10.1989 (3)0.8011 (3)0.5473 (8)0.0049 (10)
B2000.2435 (15)0.0086 (17)
B30.66670.33330.598 (3)0.0092 (19)
O10.6272 (3)0.9278 (2)0.4462 (4)0.0067 (5)
O20.07534 (16)0.92466 (16)0.7399 (6)0.0097 (7)
O30.59052 (16)0.40948 (16)0.5984 (8)0.0083 (6)
O40.22657 (17)0.77343 (17)0.7443 (5)0.0066 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ca10.0060 (3)0.0060 (3)0.0073 (4)0.0023 (3)−0.0001 (2)0.0001 (2)
La10.00442 (12)0.00442 (12)0.00474 (14)0.00129 (9)0.00003 (8)−0.00003 (8)
B10.0052 (15)0.0052 (15)0.007 (3)0.0044 (18)−0.0006 (10)0.0006 (10)
B20.011 (3)0.011 (3)0.003 (4)0.0057 (13)00
B30.009 (2)0.009 (2)0.009 (6)0.0046 (11)00
O10.0069 (10)0.0056 (10)0.0073 (11)0.0029 (9)−0.0014 (10)0.0016 (9)
O20.0090 (12)0.0090 (12)0.0124 (16)0.0055 (14)−0.0005 (7)0.0005 (7)
O30.0101 (10)0.0101 (10)0.0067 (17)0.0065 (11)0.0005 (9)−0.0005 (9)
O40.0067 (11)0.0067 (11)0.0055 (16)0.0026 (13)−0.0014 (7)0.0014 (7)

Geometric parameters (Å, °)

Ca1—O4i2.3139 (13)La1—O1i2.678 (3)
Ca1—O4ii2.3139 (13)La1—O3xiv2.8112 (8)
Ca1—O1iii2.376 (3)La1—O3xv2.8112 (8)
Ca1—O1iv2.376 (3)La1—B2xvi3.028 (3)
Ca1—O32.382 (4)La1—B13.076 (5)
Ca1—O3v2.444 (5)B1—O41.358 (6)
Ca1—O1ii2.662 (3)B1—O1i1.384 (3)
Ca1—O1vi2.662 (3)B1—O1xiii1.384 (3)
Ca1—B1i2.858 (4)B1—Ca1i2.858 (4)
Ca1—B1ii2.858 (4)B1—Ca1ii2.858 (4)
Ca1—Ca1v3.3435 (11)B2—O2xvii1.374 (3)
Ca1—Ca1vii3.3435 (11)B2—O2xviii1.374 (3)
La1—O1viii2.501 (2)B2—O2xix1.374 (3)
La1—O1ix2.501 (2)B2—La1xx3.028 (3)
La1—O4x2.516 (4)B2—La1i3.028 (3)
La1—O2x2.639 (3)B2—La1xxi3.028 (3)
La1—O2xi2.6639 (15)B3—O3xxii1.389 (3)
La1—O2xii2.6639 (15)B3—O3xxiii1.389 (3)
La1—O1xiii2.678 (3)B3—O31.389 (3)
O4i—Ca1—O4ii93.58 (15)O1ix—La1—O3xiv116.83 (10)
O4i—Ca1—O1iii151.80 (11)O4x—La1—O3xiv64.52 (12)
O4ii—Ca1—O1iii80.01 (9)O2x—La1—O3xiv122.29 (12)
O4i—Ca1—O1iv80.01 (9)O2xi—La1—O3xiv155.42 (13)
O4ii—Ca1—O1iv151.80 (11)O2xii—La1—O3xiv121.81 (10)
O1iii—Ca1—O1iv92.72 (12)O1xiii—La1—O3xiv88.50 (10)
O4i—Ca1—O3126.18 (10)O1i—La1—O3xiv65.77 (12)
O4ii—Ca1—O3126.18 (10)O1viii—La1—O3xv116.83 (9)
O1iii—Ca1—O377.64 (10)O1ix—La1—O3xv69.51 (8)
O1iv—Ca1—O377.64 (10)O4x—La1—O3xv64.52 (12)
O4i—Ca1—O3v73.69 (10)O2x—La1—O3xv122.29 (12)
O4ii—Ca1—O3v73.69 (10)O2xi—La1—O3xv121.81 (10)
O1iii—Ca1—O3v78.17 (9)O2xii—La1—O3xv155.42 (13)
O1iv—Ca1—O3v78.17 (9)O1xiii—La1—O3xv65.77 (12)
O3—Ca1—O3v144.65 (19)O1i—La1—O3xv88.50 (10)
O4i—Ca1—O1ii56.39 (9)O3xiv—La1—O3xv50.66 (12)
O4ii—Ca1—O1ii112.85 (10)O4—B1—O1i119.7 (2)
O1iii—Ca1—O1ii151.00 (8)O4—B1—O1xiii119.7 (2)
O1iv—Ca1—O1ii86.53 (8)O1i—B1—O1xiii120.6 (4)
O3—Ca1—O1ii73.88 (10)O2xvii—B2—O2xviii120.00 (0)
O3v—Ca1—O1ii129.62 (7)O2xvii—B2—O2xix120.00 (0)
O4i—Ca1—O1vi112.85 (10)O2xviii—B2—O2xix120.00 (0)
O4ii—Ca1—O1vi56.39 (9)O3xxii—B3—O3xxiii120.00 (0)
O1iii—Ca1—O1vi86.53 (8)O3xxii—B3—O3120.00 (0)
O1iv—Ca1—O1vi151.00 (8)O3xxiii—B3—O3120.00 (0)
O3—Ca1—O1vi73.88 (10)B1ii—O1—Ca1xv147.6 (3)
O3v—Ca1—O1vi129.62 (7)B1ii—O1—La1xxiv114.0 (3)
O1ii—Ca1—O1vi80.50 (11)Ca1xv—O1—La1xxiv94.81 (8)
O1viii—La1—O1ix138.96 (12)B1ii—O1—Ca1i83.5 (2)
O1viii—La1—O4x73.88 (6)Ca1xv—O1—Ca1i82.95 (8)
O1ix—La1—O4x73.88 (6)La1xxiv—O1—Ca1i87.75 (8)
O1viii—La1—O2x71.80 (6)B1ii—O1—La1ii92.9 (2)
O1ix—La1—O2x71.80 (6)Ca1xv—O1—La1ii89.98 (9)
O4x—La1—O2x64.64 (11)La1xxiv—O1—La1ii111.47 (9)
O1viii—La1—O2xi121.07 (8)Ca1i—O1—La1ii160.08 (10)
O1ix—La1—O2xi71.30 (9)B2xxv—O2—La1xxvi123.0 (5)
O4x—La1—O2xi137.71 (9)B2xxv—O2—La1xxvii91.42 (19)
O2x—La1—O2xi82.07 (7)La1xxvi—O2—La1xxvii107.69 (7)
O1viii—La1—O2xii71.30 (9)B2xxv—O2—La1xxviii91.42 (19)
O1ix—La1—O2xii121.07 (8)La1xxvi—O2—La1xxviii107.69 (7)
O4x—La1—O2xii137.71 (9)La1xxvii—O2—La1xxviii135.45 (14)
O2x—La1—O2xii82.07 (7)B3—O3—Ca1154.0 (8)
O2xi—La1—O2xii53.07 (13)B3—O3—Ca1vii118.3 (8)
O1viii—La1—O1xiii137.03 (9)Ca1—O3—Ca1vii87.71 (10)
O1ix—La1—O1xiii83.72 (6)B3—O3—La1xxix94.64 (7)
O4x—La1—O1xiii129.92 (8)Ca1—O3—La1xxix86.76 (7)
O2x—La1—O1xiii146.79 (6)Ca1vii—O3—La1xxix85.94 (9)
O2xi—La1—O1xiii68.76 (8)B3—O3—La1iii94.64 (7)
O2xii—La1—O1xiii92.23 (9)Ca1—O3—La1iii86.76 (7)
O1viii—La1—O1i83.72 (6)Ca1vii—O3—La1iii85.94 (9)
O1ix—La1—O1i137.03 (9)La1xxix—O3—La1iii169.80 (13)
O4x—La1—O1i129.92 (8)B1—O4—Ca1ii98.91 (12)
O2x—La1—O1i146.79 (6)B1—O4—Ca1i98.91 (12)
O2xi—La1—O1i92.23 (9)Ca1ii—O4—Ca1i145.78 (15)
O2xii—La1—O1i68.76 (8)B1—O4—La1xxvi127.4 (3)
O1xiii—La1—O1i53.37 (10)Ca1ii—O4—La1xxvi96.00 (9)
O1viii—La1—O3xiv69.51 (8)Ca1i—O4—La1xxvi96.00 (9)

Symmetry codes: (i) −y+1, xy+1, z; (ii) −x+y, −x+1, z; (iii) xy+1, x, z+1/2; (iv) −x+1, −x+y, z+1/2; (v) −x+1, −y+1, z+1/2; (vi) x, xy+1, z; (vii) −x+1, −y+1, z−1/2; (viii) y−1, x, z−1/2; (ix) −x+1, −y+2, z−1/2; (x) x, y, z−1; (xi) xy+1, x+1, z−1/2; (xii) y−1, −x+y, z−1/2; (xiii) −x+y, y, z; (xiv) xy, x, z−1/2; (xv) y, −x+y+1, z−1/2; (xvi) x, y+1, z; (xvii) y−1, −x+y−1, z−1/2; (xviii) xy+1, x, z−1/2; (xix) −x, −y+1, z−1/2; (xx) −x+y−1, −x, z; (xxi) x, y−1, z; (xxii) −x+y+1, −x+1, z; (xxiii) −y+1, xy, z; (xxiv) −x+1, −y+2, z+1/2; (xxv) −x, −y+1, z+1/2; (xxvi) x, y, z+1; (xxvii) y−1, −x+y, z+1/2; (xxviii) xy+1, x+1, z+1/2; (xxix) y, −x+y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2179).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Brandenburg, K. (2004). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Chen, C. T., Ye, N., Lin, J., Jiang, J., Zeng, W. R. & Wu, B. C. (1999). Adv. Mater.11, 1071–1078.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Han, B., Liang, H. B. & Lin, H. H. (2007). Appl. Phys. A Matter. Sci. Process.88, 705–709.
  • Rigaku (2000). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, Y., Chen, X. L., Liang, J. K., Gao, Y. G. & Xu, T. (2001a). J. Alloys Compd, 315, 198–202.
  • Zhang, Y., Li, Y. D. & Yin, Y. S. (2005). J. Alloys Compd, 400, 222–226.
  • Zhang, Y., Liang, J. K., Chen, X. L., He, M. & Xu, T. (2001b). J. Alloys Compd, 327, 96–99.
  • Zobetz, E. (1982). Z. Kristallogr.160, 81–92.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography