PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m820.
Published online 2008 May 17. doi:  10.1107/S1600536808014001
PMCID: PMC2961471

Di-μ-thio­semicarbazide-κ4 S:S-bis­[bis­(thio­semicarbazide-κS)copper(I)] diiodide

Abstract

The title compound, [Cu2{SC(NH2)NHNH2}6]I2, was obtained by the reaction of CuI and thio­semicarbazide (TSCZ) in acetonitrile. Each CuI ion is coordinated by four S atoms of the TSCZ ligands, forming a tetra­hedral geometry. Centrosymmetric dimers are formed by two coordination tetra­hedra sharing a common edge, with a Cu(...)Cu distance of 2.8236 (14) Å. The I ion does not have any direct inter­action with the metal. The crystal structure is stabilized by weak N—H(...)N, N—H(...)S and N—H(...)I hydrogen bonds, forming a three-dimensional network structure.

Related literature

For similar structures, see: Chattopadhyay et al. (1991 [triangle]); Burrows et al. (2004 [triangle]); Tong et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m820-scheme1.jpg

Experimental

Crystal data

  • [Cu2(CH5N3S)6]I2
  • M r = 927.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m820-efi2.jpg
  • a = 16.437 (4) Å
  • b = 8.4174 (15) Å
  • c = 22.546 (4) Å
  • β = 105.385 (5)°
  • V = 3007.6 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.92 mm−1
  • T = 273 (2) K
  • 0.45 × 0.37 × 0.23 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.272, T max = 0.466 (expected range = 0.237–0.406)
  • 7573 measured reflections
  • 2636 independent reflections
  • 2135 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.106
  • S = 1.01
  • 2636 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.87 e Å−3
  • Δρmin = −0.99 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014001/cf2195sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014001/cf2195Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the Natural Science Foundation of Liaocheng University (X051002) for support.

supplementary crystallographic information

Comment

In previous papers, thiosemicarbazide (TSCZ) has two coordination types; one is as a monodentate S-donor (Chattopadhyay et al., 1991; Tong et al., 2000), the other is as an S,N-chelating agent (Burrows et al., 2004). We report the synthesis and the structure of a TSCZ complex of cuprous iodide, (I), in which TSCZ acts as a monodentate S-donor. As shown in Fig. 1, each CuI atom is in a tetrahedral coordination environment. It is coordinated by two bridging TSCZ ligands and two terminal TSCZ ligands. The Cu—S distances are 2.3118 (14), 2.3192 (13), 2.4098 (13) and 2.4136 (14) Å, which are longer than 2.2266 (1) Å for [Cu(SC(NH2)NHNH2)Cl2] (Chattopadhyay et al., 1991). The bond lengths for S=C are 1.730 (5), 1.726 (4) and 1.702 (5) Å; the corresponding bond length in [Cu(SC(NH2)NHNH2)Cl2] is 1.717 (4)Å (Chattopadhyay et al., 1991).

In the crystal structure, hydrogen bonds are involved. Intramolecular N—H···S interactions appear to influence the conformation of the dimer, while intermolecular N—H···N, N—H···S and N—H···I interactions link the dimers and anions into a three-dimensional network structure (Fig. 2).

Experimental

CuI (0.19 g 1 mmol) and thiosemicarbazide (0.18 g, 2 mmol) were refluxed in 10 ml acetonitrile for 24 h, and a colorless solution formed. After filtration, the solution was allowed to evaporate slowly, and crystals suitable for X-ray diffraction were obtained after several days.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms, with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms. [Symmetry code for unlabeled atoms: 1 - x, y, 3/2 - z.]
Fig. 2.
Three-dimensional network structure of the title complex.

Crystal data

[Cu2(C1H5N3S1)6]I2F000 = 1808
Mr = 927.72Dx = 2.049 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
a = 16.437 (4) ÅCell parameters from 4159 reflections
b = 8.4174 (15) Åθ = 2.6–27.8º
c = 22.546 (4) ŵ = 3.92 mm1
β = 105.385 (5)ºT = 273 (2) K
V = 3007.6 (10) Å3Block, colorless
Z = 40.45 × 0.37 × 0.23 mm

Data collection

Bruker SMART CCD diffractometer2636 independent reflections
Radiation source: fine-focus sealed tube2135 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.040
T = 273(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −19→19
Tmin = 0.272, Tmax = 0.466k = −10→9
7573 measured reflectionsl = −26→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.106  w = 1/[σ2(Fo2) + (0.059P)2 + 7.7455P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2636 reflectionsΔρmax = 0.87 e Å3
154 parametersΔρmin = −0.99 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.46872 (4)−0.07773 (6)0.68532 (3)0.04027 (19)
I10.65686 (2)0.58550 (4)0.582631 (19)0.05668 (17)
N10.5760 (3)0.0278 (5)0.5883 (2)0.0488 (11)
H1A0.61450.03540.56890.059*
H1B0.5809−0.04130.61710.059*
N20.5046 (3)0.2253 (5)0.5297 (2)0.0543 (12)
H20.46180.28790.51950.065*
N30.5685 (3)0.2350 (6)0.4990 (2)0.0617 (13)
H3A0.61140.17260.50910.074*
H3B0.56470.30340.47000.074*
N40.7280 (3)0.1713 (5)0.7543 (3)0.0783 (19)
H4A0.74490.26770.75310.094*
H4B0.76430.09570.76430.094*
N50.5934 (2)0.2573 (4)0.7257 (2)0.0407 (9)
H50.54020.23750.71640.049*
N60.6214 (3)0.4144 (4)0.7244 (2)0.0467 (11)
H6A0.67460.43470.73360.056*
H6B0.58540.49040.71440.056*
N70.2933 (3)−0.2581 (5)0.5981 (2)0.0601 (14)
H7A0.2449−0.27810.57320.072*
H7B0.3049−0.16360.61240.072*
N80.3286 (3)−0.5151 (5)0.5913 (2)0.0492 (11)
H80.3644−0.59160.60100.059*
N90.2482 (3)−0.5449 (5)0.5508 (2)0.0555 (12)
H9A0.2120−0.46920.54090.067*
H9B0.2355−0.63870.53620.067*
S10.42975 (7)0.11539 (13)0.61021 (6)0.0390 (3)
S20.61502 (7)−0.05460 (13)0.74208 (6)0.0344 (3)
S30.44805 (8)−0.34566 (13)0.66223 (6)0.0423 (3)
C10.5100 (3)0.1217 (5)0.5738 (2)0.0361 (10)
C20.6478 (3)0.1399 (5)0.7409 (2)0.0347 (10)
C30.3498 (3)−0.3726 (5)0.6145 (2)0.0360 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0445 (4)0.0355 (3)0.0419 (4)−0.0033 (2)0.0134 (3)0.0014 (3)
I10.0626 (3)0.0556 (3)0.0537 (3)0.01216 (16)0.0185 (2)0.01200 (17)
N10.049 (3)0.056 (2)0.047 (3)0.011 (2)0.023 (2)0.011 (2)
N20.065 (3)0.052 (3)0.049 (3)0.006 (2)0.020 (2)0.017 (2)
N30.081 (3)0.063 (3)0.051 (3)0.006 (2)0.035 (3)0.013 (2)
N40.032 (3)0.043 (3)0.143 (6)−0.0066 (19)−0.006 (3)0.028 (3)
N50.030 (2)0.0341 (19)0.057 (3)−0.0014 (16)0.0111 (18)−0.0001 (19)
N60.035 (2)0.032 (2)0.069 (3)−0.0013 (15)0.006 (2)0.0072 (19)
N70.044 (3)0.041 (2)0.084 (4)0.008 (2)−0.004 (2)−0.010 (2)
N80.046 (2)0.035 (2)0.066 (3)0.0022 (18)0.013 (2)−0.010 (2)
N90.046 (3)0.045 (2)0.073 (4)−0.0051 (19)0.010 (2)−0.020 (2)
S10.0362 (6)0.0352 (6)0.0458 (8)0.0042 (5)0.0110 (5)0.0067 (5)
S20.0296 (6)0.0322 (5)0.0427 (7)0.0013 (4)0.0118 (5)0.0042 (5)
S30.0418 (7)0.0307 (6)0.0511 (8)0.0054 (5)0.0064 (6)−0.0008 (5)
C10.044 (3)0.028 (2)0.034 (3)−0.0051 (19)0.006 (2)−0.001 (2)
C20.031 (2)0.038 (2)0.034 (3)−0.0014 (19)0.007 (2)0.009 (2)
C30.040 (3)0.032 (2)0.041 (3)−0.0030 (19)0.019 (2)−0.002 (2)

Geometric parameters (Å, °)

Cu1—S12.3118 (14)N5—N61.404 (5)
Cu1—S32.3192 (13)N5—H50.860
Cu1—S2i2.4098 (13)N6—H6A0.860
Cu1—S22.4136 (14)N6—H6B0.860
Cu1—Cu1i2.8236 (14)N7—C31.321 (6)
N1—C11.312 (6)N7—H7A0.860
N1—H1A0.860N7—H7B0.860
N1—H1B0.860N8—C31.318 (6)
N2—C11.307 (6)N8—N91.415 (6)
N2—N31.405 (6)N8—H80.860
N2—H20.860N9—H9A0.860
N3—H3A0.860N9—H9B0.860
N3—H3B0.860S1—C11.730 (5)
N4—C21.300 (6)S2—C21.726 (4)
N4—H4A0.860S2—Cu1i2.4098 (13)
N4—H4B0.860S3—C31.702 (5)
N5—C21.315 (6)
S1—Cu1—S3121.59 (6)N5—N6—H6B120.0
S1—Cu1—S2i110.09 (5)H6A—N6—H6B120.0
S3—Cu1—S2i98.91 (5)C3—N7—H7A120.0
S1—Cu1—S2112.03 (5)C3—N7—H7B120.0
S3—Cu1—S2105.28 (5)H7A—N7—H7B120.0
S2i—Cu1—S2107.55 (4)C3—N8—N9121.4 (4)
S1—Cu1—Cu1i135.30 (4)C3—N8—H8119.3
S3—Cu1—Cu1i102.91 (4)N9—N8—H8119.3
S2i—Cu1—Cu1i54.23 (4)N8—N9—H9A120.0
S2—Cu1—Cu1i54.11 (4)N8—N9—H9B120.0
C1—N1—H1A120.0H9A—N9—H9B120.0
C1—N1—H1B120.0C1—S1—Cu1105.77 (16)
H1A—N1—H1B120.0C2—S2—Cu1i108.92 (16)
C1—N2—N3120.4 (4)C2—S2—Cu1109.82 (16)
C1—N2—H2119.8Cu1i—S2—Cu171.66 (4)
N3—N2—H2119.8C3—S3—Cu1109.23 (15)
N2—N3—H3A120.0N2—C1—N1118.4 (5)
N2—N3—H3B120.0N2—C1—S1118.4 (4)
H3A—N3—H3B120.0N1—C1—S1123.2 (4)
C2—N4—H4A120.0N4—C2—N5119.0 (4)
C2—N4—H4B120.0N4—C2—S2119.4 (4)
H4A—N4—H4B120.0N5—C2—S2121.6 (3)
C2—N5—N6120.6 (4)N8—C3—N7117.4 (5)
C2—N5—H5119.7N8—C3—S3118.6 (4)
N6—N5—H5119.7N7—C3—S3124.0 (4)
N5—N6—H6A120.0

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N9ii0.862.443.219 (6)152
N1—H1B···S20.862.733.426 (5)140
N2—H2···I1iii0.862.803.526 (5)143
N3—H3B···S3iv0.862.953.692 (5)145
N4—H4A···S2v0.862.723.446 (4)142
N4—H4B···N6vi0.862.383.225 (6)167
N5—H5···S10.862.793.424 (4)132
N6—H6A···N4v0.862.523.225 (6)139
N7—H7B···I1vii0.863.153.620 (4)117
N8—H8···S1viii0.862.683.499 (4)161
N9—H9B···I1ix0.862.983.608 (5)132

Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) −x+3/2, y+1/2, −z+3/2; (vi) −x+3/2, y−1/2, −z+3/2; (vii) x−1/2, y−1/2, z; (viii) x, y−1, z; (ix) x−1/2, y−3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2195).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2004). Cryst. Growth Des.4, 813–822.
  • Chattopadhyay, D., Majumdar, S. K., Lowe, P., Chattopadhyay, S. K. & Ghosh, S. (1991). J. Chem. Soc. Dalton Trans. pp. 2121–2124.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tong, Y.-X., Su, C.-Y., Zhang, Z.-F., Kang, B.-S., Yu, X.-L. & Chen, X.-M. (2000). Acta Cryst. C56, 44–45. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography