PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1168.
Published online 2008 May 30. doi:  10.1107/S1600536808015511
PMCID: PMC2961467

Methyl 2-(5-bromo-2-methyl­naphtho[2,1-b]furan-1-yl)acetate

Abstract

The three fused six-, six- and five-membered rings in the title compound, C16H13BrO3, are coplanar, the CH2C(=O)OCH3 residue being twisted out of this plane [dihedral angle = −26.9 (4)°]. Centrosymmetric dimers are found in the crystal structure stabilized by C—H(...)O inter­actions involving the furan O atom.

Related literature

For related literature, see: Chatterjea et al. (1979 [triangle]); Einhorn et al. (1983 [triangle]); Monte et al. (1996 [triangle]); Jevric et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1168-scheme1.jpg

Experimental

Crystal data

  • C16H13BrO3
  • M r = 333.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1168-efi1.jpg
  • a = 17.050 (2) Å
  • b = 14.5064 (17) Å
  • c = 5.3660 (7) Å
  • β = 96.443 (3)°
  • V = 1318.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.12 mm−1
  • T = 223 (2) K
  • 0.68 × 0.18 × 0.16 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.492, T max = 1.000 (expected range = 0.299–0.607)
  • 10676 measured reflections
  • 3817 independent reflections
  • 2967 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.136
  • S = 1.13
  • 3817 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.77 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015511/su2059sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015511/su2059Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Australian Research Council for financial support.

supplementary crystallographic information

Comment

Little has been done on observing aromatic electrophillic substitutions on polycyclic aromatic systems related to 1 shown in Fig. 3 (Chatterjea et al., 1979). Previous work showed that substitution should proceed at position five in the ring system of 1 (Chatterjea et al., 1979). Treatment of 1 with bromine in acetic acid according to a literature procedure (Einhorn et al., 1983 & Monte et al., 1996) gave the title compound (I) as the sole isolatable product. 1H NMR analysis of (I) showed five aromatic proton signals, two of which experienced two large ortho couplings and one a singlet (δ 7.81). This coupling pattern indicated that an aromatic electrophilic substitution had occurred on the ring adjoining the furan. However, although all signals were unobscured it was not possible to assign the peri proton as no detectable cross-peak in the ROESY spectrum was observed. X-ray crystallography showed that the position of the bromine substitution was in accordance with previous literature (Chatterjea et al., 1979).

Compound (I), Fig. 1, is comprised of three fused rings; two six-membered rings (A & B) and one five-membered ring (C). The respective A/B, A/C & B/C dihedral angles between their least-squares planes are 1.88 (13), 4.16 (15) & 2.48 (14)°. The CH2C(=O)OCH3 residue is twisted out of the tricyclic system, as seen in the value of the C1/C11/C12/O12 torsion angle of -26.9 (4)°. The crystal packing features centrosymmetric dimers consolidated by C—H···O contacts involving the furan-O atom; Table 1 and Fig. 2.

The structure ofthe related compound 2-(2-methylnaphtho[2,1-b]furan-1-yl)acetic acid has been reported in the preceding paper (Jevric et al., 2008).

Experimental

Compound (I) was formed (Einhorn et al., 1983 & Monte et al., 1996) in 88% yield as a colourless solid recrystallized from n-heptane; m.p.: 391 - 393 K. Rf = 0.24 (12% acetone in hexane). IR (CH2Cl2, cm-1) 1741, 1618, 1577, 1521. 1H NMR (d6-benzene, 600 MHz) δ 2.00 (s, 3H), 3.21 (s, 3H), 3.41 (s, 2H), 7.27 (ddd, J = 7.0, 7.0, 1.2 Hz, 1H), 7.38 (ddd, J = 7.0, 7.0, 1.2 Hz, 1H), 7.81 (s, 1H), 8.36 (dd, J = 7.0, 1.2 Hz, 1H), 8.46 (dd, J = 7.0, 1.2 Hz, 1H) p.p.m.. 13C NMR (CDCl3, 50 MHz) δ 11.9, 31.4, 52.3, 109.5, 116.5, 118.1, 122.3, 123.1, 125.2, 126.9, 128.3, 128.4, 128.8, 150.7, 152.9, 171.3 p.p.m.. MS m/z (%): 332 (M+, 100), 273 (93), 259 (25), 194 (37), 165 (62). HRMS, C16H13BrO3: calcd, 332.0049; found 332.0062.

Refinement

All H atoms were included in calculated positions and treated as riding atoms: C—H = 0.94 - 0.98 Å, and with Uiso(H) = 1.5 or 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of compound (I) showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Crystal packing of compound (I) viewed in projection down the c axis, highlighting the stacking of the dimeric aggregates. Colour scheme olive (Br), red (O), grey (C), and green (H). The C—H···O contacts are shown as orange ...
Fig. 3.
The formation of the title compound.

Crystal data

C16H13BrO3F000 = 672
Mr = 333.17Dx = 1.678 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 2984 reflections
a = 17.050 (2) Åθ = 2.4–29.7º
b = 14.5064 (17) ŵ = 3.12 mm1
c = 5.3660 (7) ÅT = 223 (2) K
β = 96.443 (3)ºPlate, pale-yellow
V = 1318.8 (3) Å30.68 × 0.18 × 0.16 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3817 independent reflections
Radiation source: fine-focus sealed tube2967 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
T = 223(2) Kθmax = 30.1º
ω scansθmin = 1.2º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −23→23
Tmin = 0.492, Tmax = 1.0k = −14→20
10676 measured reflectionsl = −7→7

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.136  w = 1/[σ2(Fo2) + (0.0586P)2 + 0.71P] where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
3817 reflectionsΔρmax = 0.47 e Å3
183 parametersΔρmin = −0.77 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br50.04963 (2)0.33514 (2)−0.16830 (6)0.04284 (14)
O30.10671 (11)0.56263 (13)0.5779 (4)0.0285 (4)
O120.33445 (13)0.68019 (14)0.3251 (4)0.0321 (4)
O130.44151 (12)0.62588 (17)0.5516 (4)0.0379 (5)
C10.23909 (16)0.56919 (18)0.6116 (5)0.0242 (5)
C20.17380 (16)0.60179 (18)0.7005 (5)0.0258 (5)
C3A0.13162 (16)0.50429 (18)0.4058 (5)0.0262 (5)
C40.08136 (18)0.45375 (19)0.2380 (5)0.0308 (6)
H40.02630.45540.23880.037*
C50.11641 (18)0.40163 (19)0.0720 (5)0.0307 (6)
C5A0.19934 (18)0.39606 (18)0.0699 (5)0.0293 (6)
C60.2347 (2)0.34180 (19)−0.1028 (6)0.0384 (7)
H60.20270.3084−0.22510.046*
C70.3142 (2)0.3368 (2)−0.0963 (6)0.0422 (8)
H70.33680.3005−0.21460.051*
C80.3627 (2)0.3850 (2)0.0844 (6)0.0371 (7)
H80.41780.38020.08990.044*
C90.33055 (18)0.43933 (19)0.2536 (5)0.0306 (6)
H90.36390.47190.37440.037*
C9A0.24847 (17)0.44736 (18)0.2501 (5)0.0268 (5)
C9B0.21225 (16)0.50423 (17)0.4179 (5)0.0242 (5)
C110.32098 (16)0.59630 (19)0.7023 (5)0.0259 (5)
H11A0.35020.54160.76700.031*
H11B0.31990.63990.84130.031*
C120.36339 (16)0.63946 (18)0.5035 (5)0.0258 (5)
C130.4870 (2)0.6604 (3)0.3638 (8)0.0546 (10)
H13A0.47100.62950.20580.082*
H13B0.54250.64890.41410.082*
H13C0.47820.72620.34380.082*
C210.16031 (19)0.66841 (19)0.8973 (6)0.0315 (6)
H21A0.14190.63621.03800.047*
H21B0.12090.71290.83130.047*
H21C0.20930.70010.95260.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br50.0624 (3)0.0341 (2)0.02918 (18)−0.01456 (14)−0.00759 (14)−0.00306 (11)
O30.0299 (10)0.0309 (10)0.0251 (9)−0.0050 (8)0.0054 (7)−0.0038 (8)
O120.0351 (11)0.0337 (11)0.0268 (10)0.0006 (8)0.0003 (8)0.0070 (8)
O130.0265 (10)0.0498 (13)0.0375 (12)0.0037 (9)0.0032 (9)0.0119 (10)
C10.0328 (14)0.0211 (11)0.0183 (11)−0.0022 (10)0.0018 (9)0.0015 (9)
C20.0310 (13)0.0232 (12)0.0231 (12)−0.0028 (10)0.0025 (10)0.0012 (9)
C3A0.0322 (14)0.0246 (12)0.0221 (11)−0.0042 (10)0.0047 (10)0.0012 (10)
C40.0345 (15)0.0304 (14)0.0267 (13)−0.0095 (11)0.0005 (11)0.0013 (11)
C50.0427 (16)0.0240 (12)0.0238 (12)−0.0093 (11)−0.0036 (11)0.0019 (10)
C5A0.0463 (16)0.0208 (12)0.0206 (12)−0.0010 (11)0.0035 (11)0.0027 (9)
C60.064 (2)0.0249 (14)0.0262 (14)0.0001 (13)0.0036 (13)−0.0017 (11)
C70.069 (2)0.0293 (15)0.0304 (15)0.0110 (15)0.0131 (15)−0.0013 (12)
C80.0463 (17)0.0279 (14)0.0382 (16)0.0105 (13)0.0101 (13)0.0048 (12)
C90.0400 (15)0.0239 (13)0.0283 (13)0.0031 (11)0.0058 (11)0.0036 (10)
C9A0.0383 (15)0.0198 (12)0.0227 (12)0.0002 (10)0.0052 (10)0.0030 (9)
C9B0.0333 (14)0.0191 (11)0.0198 (11)−0.0032 (10)0.0010 (10)0.0022 (9)
C110.0298 (13)0.0262 (13)0.0207 (11)−0.0016 (10)−0.0020 (10)0.0021 (9)
C120.0294 (13)0.0232 (12)0.0239 (12)0.0003 (10)−0.0009 (10)−0.0032 (9)
C130.0363 (18)0.079 (3)0.051 (2)−0.0019 (17)0.0130 (16)0.0162 (19)
C210.0381 (15)0.0305 (14)0.0265 (13)−0.0039 (12)0.0068 (11)−0.0034 (11)

Geometric parameters (Å, °)

Br5—C51.887 (3)C6—H60.9400
O3—C3A1.355 (3)C7—C81.390 (5)
O3—C21.377 (3)C7—H70.9400
O12—C121.184 (3)C8—C91.362 (4)
O13—C121.343 (3)C8—H80.9400
O13—C131.429 (4)C9—C9A1.402 (4)
C1—C21.345 (4)C9—H90.9400
C1—C9B1.439 (3)C9A—C9B1.413 (4)
C1—C111.479 (4)C11—C121.492 (4)
C2—C211.468 (4)C11—H11A0.9800
C3A—C9B1.369 (4)C11—H11B0.9800
C3A—C41.382 (4)C13—H13A0.9700
C4—C51.357 (4)C13—H13B0.9700
C4—H40.9400C13—H13C0.9700
C5—C5A1.417 (4)C21—H21A0.9700
C5A—C61.403 (4)C21—H21B0.9700
C5A—C9A1.417 (4)C21—H21C0.9700
C6—C71.354 (6)
C3A—O3—C2106.0 (2)C8—C9—H9119.5
C12—O13—C13114.7 (2)C9A—C9—H9119.5
C2—C1—C9B106.1 (2)C9—C9A—C9B123.1 (3)
C2—C1—C11125.3 (2)C9—C9A—C5A118.6 (3)
C9B—C1—C11128.6 (2)C9B—C9A—C5A118.3 (3)
C1—C2—O3111.2 (2)C3A—C9B—C9A118.6 (2)
C1—C2—C21133.6 (3)C3A—C9B—C1105.7 (2)
O3—C2—C21115.2 (2)C9A—C9B—C1135.7 (3)
O3—C3A—C9B111.0 (2)C1—C11—C12113.1 (2)
O3—C3A—C4123.8 (3)C1—C11—H11A109.0
C9B—C3A—C4125.2 (3)C12—C11—H11A109.0
C5—C4—C3A115.9 (3)C1—C11—H11B109.0
C5—C4—H4122.1C12—C11—H11B109.0
C3A—C4—H4122.1H11A—C11—H11B107.8
C4—C5—C5A123.4 (3)O12—C12—O13122.9 (3)
C4—C5—Br5117.2 (2)O12—C12—C11126.6 (3)
C5A—C5—Br5119.4 (2)O13—C12—C11110.6 (2)
C6—C5A—C9A118.7 (3)O13—C13—H13A109.5
C6—C5A—C5122.7 (3)O13—C13—H13B109.5
C9A—C5A—C5118.6 (3)H13A—C13—H13B109.5
C7—C6—C5A121.1 (3)O13—C13—H13C109.5
C7—C6—H6119.5H13A—C13—H13C109.5
C5A—C6—H6119.5H13B—C13—H13C109.5
C6—C7—C8120.4 (3)C2—C21—H21A109.5
C6—C7—H7119.8C2—C21—H21B109.5
C8—C7—H7119.8H21A—C21—H21B109.5
C9—C8—C7120.2 (3)C2—C21—H21C109.5
C9—C8—H8119.9H21A—C21—H21C109.5
C7—C8—H8119.9H21B—C21—H21C109.5
C8—C9—C9A121.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.942.583.468 (4)157

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2059).

References

  • Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435–435.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, U. S. A.
  • Chatterjea, J. N., Lal, S., Jha, U., Rycroft, D. S. & Carnduff, J. (1979). J. Chem. Res. Synop. pp. 356–356.
  • Einhorn, J., Demerseman, P., Royer, R. & Cavier, R. (1983). Eur. J. Med. Chem.18, 175–180.
  • Jevric, M., Taylor, D. K. & Tiekink, E. R. T. (2008). Acta Cryst. E64, o1167. [PMC free article] [PubMed]
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Monte, A. P., Marona-Lewicka, D., Parker, M. A., Wainscott, D. B., Nelson, D. L. & Nichols, D. E. (1996). J. Med. Chem.39, 2953–2961. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography