PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m780.
Published online 2008 May 7. doi:  10.1107/S1600536808012828
PMCID: PMC2961464

Bromido-1κBr-tricarbonyl-2κ3 C-(2η5-cyclo­penta­dien­yl)molybdenum(I)tungsten(I)(WMo)

Abstract

The title compound, [WMoBr(C5H5)(CO)3], is built up from a pseudo-square-pyramidal piano-stool coordination around the Mo atom, the important geometry being Mo—W = 2.6872 (7) Å, W—Br = 2.5591 (9) Å and Mo—W—Br = 158.35 (3)°.

Related literature

For related literature, see Albright et al. (1978 [triangle]); Bueno & Churchill (1981 [triangle]); Changamu et al. (2006 [triangle]); Friedrich et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m780-scheme1.jpg

Experimental

Crystal data

  • [WMoBr(C5H5)(CO)3]
  • M r = 508.82
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-64-0m780-efi1.jpg
  • a = 11.9375 (9) Å
  • c = 15.546 (2) Å
  • V = 2215.4 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 15.09 mm−1
  • T = 100 (2) K
  • 0.11 × 0.10 × 0.07 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.251, T max = 0.347
  • 13298 measured reflections
  • 2673 independent reflections
  • 2497 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.069
  • S = 1.02
  • 2673 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 1.31 e Å−3
  • Δρmin = −0.72 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1118 Friedel pairs
  • Flack parameter: 0.00 (1)

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012828/dn2343sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012828/dn2343Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the NRF, WSU and UWC for funding, and to Miss Lungelwa Dyantyi for assistance with the experimental work.

supplementary crystallographic information

Comment

The compound I was a by-product of a study on the functionalization of paraffins using transition metals. The functionalized compounds have potential applications in catalysis and organic syntheses (Changamu et al., 2006). The compound I is similar to the reported structure of (η5-C5H5(CO)3MoHgCl (Bueno et al., 1981), Albright et al. (1978). The bond distances of W—Mo, 2.6872 (7) Å and W—Br, 2.5591 (9) Å are comparable to Hg—Mo, 2.693 (30) Å and Hg—Cl, 2.437 (8) Å respectively. The slight difference between the bond lenghts involving the halides could be attributed to the difference in electronegativity and hence basicity between bromine and chlorine.The coordination around Mo is a pseudo-square pyramidal piano stool arrangement.(Fig. 1)

Experimental

The compound I was prepared according to a reported procedure (Friedrich et al., 2004) and crystals were grown by slow evaporation of a mixture of dichloromethane and hexane at 263 K.

Refinement

Hydrogen atoms were treated as riding on their parent C atoms with C–H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
Molecular structure of the title complex showing the atom numbering scheme. Ellipsoids are drawn at the 50% probability level.

Crystal data

[WMoBr(C5H5)(CO)3]Z = 8
Mr = 508.82F000 = 1824
Tetragonal, P421cDx = 3.051 Mg m3
Hall symbol: P -4 2nMo Kα radiation λ = 0.71073 Å
a = 11.9375 (9) ÅCell parameters from 2238 reflections
b = 11.9375 (9) Åθ = 2.2–25.5º
c = 15.546 (2) ŵ = 15.09 mm1
α = 90ºT = 100 (2) K
β = 90ºBlock, yellow
γ = 90º0.11 × 0.10 × 0.07 mm
V = 2215.4 (4) Å3

Data collection

Bruker APEX CCD area-detector diffractometer2673 independent reflections
Radiation source: fine-focus sealed tube2497 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.048
T = 100(2) Kθmax = 28.3º
ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2002)h = −15→14
Tmin = 0.251, Tmax = 0.347k = −8→15
13298 measured reflectionsl = −20→18

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.030  w = 1/[σ2(Fo2) + (0.0238P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max = 0.001
S = 1.02Δρmax = 1.31 e Å3
2673 reflectionsΔρmin = −0.72 e Å3
127 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1118 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.00 (1)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
W10.64476 (3)0.39974 (3)0.89630 (2)0.01742 (9)
Mo10.73518 (6)0.20182 (6)0.85204 (5)0.01833 (16)
Br10.62054 (7)0.61253 (7)0.90359 (5)0.01974 (17)
O10.5124 (6)0.1402 (6)0.9503 (5)0.0480 (19)
O20.6348 (5)0.0161 (6)0.7340 (4)0.0402 (17)
O30.6948 (5)0.3305 (6)0.6794 (4)0.0330 (16)
C10.5937 (8)0.1680 (7)0.9122 (6)0.031 (2)
C20.6724 (7)0.0833 (7)0.7766 (6)0.026 (2)
C30.7057 (7)0.2868 (8)0.7450 (6)0.027 (2)
C40.8467 (10)0.1507 (11)0.9698 (7)0.047 (3)
H40.81510.12451.02220.057*
C50.8729 (8)0.0831 (8)0.9024 (7)0.038 (2)
H50.86220.00430.89960.046*
C60.9203 (7)0.1535 (11)0.8354 (6)0.044 (3)
H60.94680.13080.78050.052*
C70.9181 (9)0.2684 (10)0.8715 (9)0.059 (4)
H70.94310.33590.84550.071*
C80.8694 (10)0.2533 (11)0.9549 (7)0.052 (3)
H80.85570.31260.99430.063*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
W10.01888 (17)0.01447 (16)0.01889 (15)0.00532 (12)0.00265 (14)−0.00152 (14)
Mo10.0158 (3)0.0170 (3)0.0222 (3)0.0033 (3)0.0015 (3)−0.0020 (3)
Br10.0214 (4)0.0168 (4)0.0209 (4)0.0015 (3)0.0032 (3)0.0010 (3)
O10.036 (4)0.032 (4)0.076 (5)0.006 (3)0.029 (4)0.011 (4)
O20.034 (4)0.033 (4)0.054 (4)0.006 (3)−0.008 (3)−0.016 (3)
O30.035 (4)0.045 (4)0.019 (3)0.007 (3)−0.005 (3)0.002 (3)
C10.032 (5)0.015 (4)0.045 (6)0.009 (4)0.004 (5)0.003 (4)
C20.020 (5)0.020 (5)0.037 (5)0.003 (4)0.006 (4)−0.012 (4)
C30.020 (5)0.033 (5)0.029 (5)0.002 (4)−0.004 (4)−0.008 (4)
C40.042 (6)0.069 (8)0.030 (5)−0.002 (7)0.000 (5)0.002 (6)
C50.033 (5)0.030 (5)0.053 (6)0.015 (4)−0.025 (5)0.004 (5)
C60.016 (5)0.091 (9)0.024 (5)0.028 (5)−0.007 (4)−0.007 (5)
C70.025 (6)0.043 (7)0.110 (11)−0.014 (5)−0.036 (6)0.048 (7)
C80.037 (7)0.058 (8)0.061 (7)0.015 (6)−0.016 (5)−0.035 (7)

Geometric parameters (Å, °)

W1—Br12.5591 (9)O3—C31.152 (12)
W1—Mo12.6872 (7)C4—C81.276 (17)
Mo1—C11.972 (10)C4—C51.359 (15)
Mo1—C31.980 (10)C4—H40.9500
Mo1—C21.985 (8)C5—C61.453 (15)
Mo1—C62.298 (8)C5—H50.9500
Mo1—C52.307 (8)C6—C71.482 (17)
Mo1—C72.344 (10)C6—H60.9500
Mo1—C42.345 (12)C7—C81.433 (16)
Mo1—C82.346 (10)C7—H70.9500
O1—C11.184 (11)C8—H80.9500
O2—C21.132 (10)
Br1—W1—Mo1158.35 (3)C4—Mo1—W1104.9 (3)
C1—Mo1—C3110.5 (4)C8—Mo1—W182.5 (3)
C1—Mo1—C279.1 (4)O1—C1—Mo1175.0 (8)
C3—Mo1—C278.5 (4)O2—C2—Mo1178.9 (8)
C1—Mo1—C6145.6 (4)O3—C3—Mo1174.3 (8)
C3—Mo1—C6101.8 (4)C8—C4—C5112.4 (11)
C2—Mo1—C696.8 (4)C8—C4—Mo174.3 (7)
C1—Mo1—C5108.9 (4)C5—C4—Mo171.5 (6)
C3—Mo1—C5136.6 (4)C8—C4—H4123.8
C2—Mo1—C591.8 (4)C5—C4—H4123.8
C6—Mo1—C536.8 (4)Mo1—C4—H4121.9
C1—Mo1—C7143.7 (4)C4—C5—C6107.4 (10)
C3—Mo1—C795.8 (4)C4—C5—Mo174.5 (6)
C2—Mo1—C7132.1 (4)C6—C5—Mo171.3 (5)
C6—Mo1—C737.2 (4)C4—C5—H5126.3
C5—Mo1—C760.0 (4)C6—C5—H5126.3
C1—Mo1—C493.6 (4)Mo1—C5—H5119.8
C3—Mo1—C4152.9 (4)C5—C6—C7104.9 (9)
C2—Mo1—C4119.4 (4)C5—C6—Mo171.9 (5)
C6—Mo1—C458.5 (4)C7—C6—Mo173.0 (5)
C5—Mo1—C434.0 (4)C5—C6—H6127.6
C7—Mo1—C457.2 (4)C7—C6—H6127.6
C1—Mo1—C8108.4 (4)Mo1—C6—H6119.6
C3—Mo1—C8124.1 (4)C8—C7—C6103.5 (9)
C2—Mo1—C8148.0 (4)C8—C7—Mo172.3 (6)
C6—Mo1—C859.1 (4)C6—C7—Mo169.7 (5)
C5—Mo1—C856.1 (4)C8—C7—H7128.2
C7—Mo1—C835.6 (4)C6—C7—H7128.2
C4—Mo1—C831.6 (4)Mo1—C7—H7121.7
C1—Mo1—W173.4 (2)C4—C8—C7111.8 (10)
C3—Mo1—W172.1 (3)C4—C8—Mo174.2 (7)
C2—Mo1—W1128.8 (3)C7—C8—Mo172.1 (6)
C6—Mo1—W1129.5 (3)C4—C8—H8124.1
C5—Mo1—W1137.7 (3)C7—C8—H8124.1
C7—Mo1—W192.5 (3)Mo1—C8—H8121.1
Br1—W1—Mo1—C1−172.7 (3)C8—Mo1—C6—C573.6 (7)
Br1—W1—Mo1—C3−54.0 (3)W1—Mo1—C6—C5119.9 (6)
Br1—W1—Mo1—C2−112.2 (3)C1—Mo1—C6—C7−115.9 (9)
Br1—W1—Mo1—C636.8 (3)C3—Mo1—C6—C783.9 (7)
Br1—W1—Mo1—C587.2 (4)C2—Mo1—C6—C7163.6 (6)
Br1—W1—Mo1—C741.3 (3)C5—Mo1—C6—C7−112.4 (8)
Br1—W1—Mo1—C497.9 (3)C4—Mo1—C6—C7−76.0 (7)
Br1—W1—Mo1—C875.5 (3)C8—Mo1—C6—C7−38.9 (6)
C1—Mo1—C4—C8−120.1 (8)W1—Mo1—C6—C77.4 (7)
C3—Mo1—C4—C833.5 (13)C5—C6—C7—C8−0.4 (9)
C2—Mo1—C4—C8160.4 (7)Mo1—C6—C7—C865.0 (7)
C6—Mo1—C4—C881.2 (8)C5—C6—C7—Mo1−65.4 (6)
C5—Mo1—C4—C8120.8 (11)C1—Mo1—C7—C88.5 (10)
C7—Mo1—C4—C836.9 (7)C3—Mo1—C7—C8145.7 (7)
W1—Mo1—C4—C8−46.3 (8)C2—Mo1—C7—C8−134.5 (8)
C1—Mo1—C4—C5119.1 (7)C6—Mo1—C7—C8−112.3 (8)
C3—Mo1—C4—C5−87.3 (11)C5—Mo1—C7—C8−72.6 (7)
C2—Mo1—C4—C539.6 (8)C4—Mo1—C7—C8−32.7 (6)
C6—Mo1—C4—C5−39.6 (7)W1—Mo1—C7—C873.4 (7)
C7—Mo1—C4—C5−83.8 (8)C1—Mo1—C7—C6120.8 (8)
C8—Mo1—C4—C5−120.8 (11)C3—Mo1—C7—C6−102.0 (6)
W1—Mo1—C4—C5−167.1 (6)C2—Mo1—C7—C6−22.2 (8)
C8—C4—C5—C60.7 (13)C5—Mo1—C7—C639.7 (6)
Mo1—C4—C5—C664.2 (6)C4—Mo1—C7—C679.6 (7)
C8—C4—C5—Mo1−63.4 (10)C8—Mo1—C7—C6112.3 (8)
C1—Mo1—C5—C4−67.1 (8)W1—Mo1—C7—C6−174.3 (6)
C3—Mo1—C5—C4138.6 (7)C5—C4—C8—C7−1.0 (14)
C2—Mo1—C5—C4−146.2 (7)Mo1—C4—C8—C7−62.8 (8)
C6—Mo1—C5—C4115.0 (10)C5—C4—C8—Mo161.8 (9)
C7—Mo1—C5—C474.7 (8)C6—C7—C8—C40.9 (12)
C8—Mo1—C5—C432.8 (7)Mo1—C7—C8—C464.1 (9)
W1—Mo1—C5—C418.7 (9)C6—C7—C8—Mo1−63.2 (6)
C1—Mo1—C5—C6177.9 (6)C1—Mo1—C8—C465.5 (8)
C3—Mo1—C5—C623.6 (8)C3—Mo1—C8—C4−162.4 (7)
C2—Mo1—C5—C698.8 (6)C2—Mo1—C8—C4−33.5 (12)
C7—Mo1—C5—C6−40.2 (6)C6—Mo1—C8—C4−79.1 (8)
C4—Mo1—C5—C6−115.0 (10)C5—Mo1—C8—C4−35.3 (7)
C8—Mo1—C5—C6−82.2 (7)C7—Mo1—C8—C4−119.8 (10)
W1—Mo1—C5—C6−96.2 (7)W1—Mo1—C8—C4135.2 (7)
C4—C5—C6—C7−0.1 (10)C1—Mo1—C8—C7−174.7 (7)
Mo1—C5—C6—C766.2 (6)C3—Mo1—C8—C7−42.6 (8)
C4—C5—C6—Mo1−66.3 (7)C2—Mo1—C8—C786.3 (11)
C1—Mo1—C6—C5−3.5 (10)C6—Mo1—C8—C740.7 (6)
C3—Mo1—C6—C5−163.7 (6)C5—Mo1—C8—C784.5 (7)
C2—Mo1—C6—C5−84.0 (6)C4—Mo1—C8—C7119.8 (10)
C7—Mo1—C6—C5112.4 (8)W1—Mo1—C8—C7−105.0 (7)
C4—Mo1—C6—C536.5 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2343).

References

  • Albright, M. J., Glick, D. M. & Oliver, J. P. (1978). J. Organomet. Chem.161, 221–231.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2002). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bueno, C. & Churchill, R. M. (1981). Inorg. Chem.20, 2197–2202.
  • Changamu, E. O., Friedrich, H. B., Onani, M. O. & Rademeyer, M. (2006). J. Organomet. Chem.691, 4615–4625.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Friedrich, H. B., Howie, R. A., Laing, M. & Onani, M. O. (2004). J. Organomet. Chem.689, 181–193.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst 36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography