PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o963.
Published online 2008 May 3. doi:  10.1107/S1600536808012294
PMCID: PMC2961462

4-(4-Fluoro­phen­yl)-6-(2-fur­yl)pyrimidin-2-amine

Abstract

Mol­ecules of the title compound, C14H10FN3O, are essentially planar and in the crystal structure they form dimers via hydrogen bonds, involving pyrimidinyl N atoms and amino H atoms, about inversion centers. The centroids of the furyl and pyrimidinyl rings are separated by 3.489 (2)Å, indicating π–π stacking inter­actions.

Related literature

For related literature, see: Colorado, & Brodbelt (1996 [triangle]); Bojarski et al. (1985 [triangle]); Fun et al. (2006 [triangle]); Gallagher et al. (2004 [triangle]); Hueso et al. (2003 [triangle]); Miranda et al. (2006 [triangle]); Varga et al. (2003 [triangle]).; Miyazaki et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o963-scheme1.jpg

Experimental

Crystal data

  • C14H10FN3O
  • M r = 255.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o963-efi1.jpg
  • a = 11.629 (4) Å
  • b = 5.992 (3) Å
  • c = 16.389 (6) Å
  • β = 97.69 (2)°
  • V = 1131.7 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 173 (2) K
  • 0.24 × 0.20 × 0.16 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.974, T max = 0.983
  • 4617 measured reflections
  • 2567 independent reflections
  • 1935 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.123
  • S = 1.03
  • 2567 reflections
  • 179 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012294/lh2621sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012294/lh2621Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the Higher Education Commission of Pakistan for the financial support for the project.

supplementary crystallographic information

Comment

Compounds containing a pyrimidine moiety play a significant role in many biological systems (Hueso et al., 2003). The pyrimidine ring is present in nucleic acids, several vitamins, coenzymes and antibiotics. Pyrimidine based compounds have been reported as anticancer and antiviral agents (Miyazaki et al., 2005). They have been used as hypnotic drugs for the nervous system, e.g., barbiturates act as anaesthetic and sleeping agents and have been in use for the treatment of anxiety, epilepsy and other psychiatric disorders (Colorado & Brodbelt, 1996; Bojarski et al., 1985). We have prepared a series of pyrimidine based compounds from different chalcones following the literature method (Varga et al., 2003). In this paper we report the preparation and structure of the title pyrimidine compound, (I).

The crystal structure of (I) is composed of more or less planar molecules of 4-(4-fluorophenyl)-6-(2-furyl)pyrimidin-2-yl-amine (Fig. 1) wherein the dihedral angle between the mean-planes formed by the furyl and pyrimidinyl rings is 1.91 (12)° and the phenyl ring is oriented at 12.33 (11) and 10.45 (10)° with respect to these rings, respectively. The atoms F1 and N3 are displaced from the mean-planes of the phenyl and pyrimidinyl rings by 0.026 (2) and 0.032 (2) Å, respectively. The bond distances and bond angles in (I) agree well with the corresponding bond distances and angles reported in some compounds closely related to (I)(e.g., Gallagher et al., 2004; Fun et al., 2006; Miranda et al., 2006). The geometry at atom N3 is trigonal pyramidal with sum of the angles about N3 being 348.6°.

It is interesting to note that only one of the amino H-atoms, namely H31 is involved in hydrogen bonding, resulting in dimers about inversion centers (Fig. 2) (details of hydrogen bonding geometry are given in Table 1). In addition, non-classical intermolecular hydrogen bonds, C5–H5···O1, and intramolecular interactions C2–H2···N1 were also observed. The shortest distance between the centroids of furyl and pyrimidinyl rings from adjacent molecules separated by translation along the b axis is 3.489 (2) Å indicating π-π stacking interactions.

Experimental

3-(4-Fluorophenyl)-1-(furan-2-yl)prop-2-en-1-one (2.5 g, 9.08 mmol), guanidine hydrochloride (1.3 g, 1.5 mmol), ethanol (20 ml) and 50% aqueous KOH solution (4 ml) were mixed together and stirred at reflux temperature for 1 hr. Under the same conditions, 30% aqueous H2O2 (3.1 ml, 27.3 mmol) was added to the above mixture in small portions over a period of I hr. The ethanol was removed under reduced pressure in a rotary evaporator and distilled water (20 ml) was added to the residue. The product was isolated as precipitates, washed repeatedly with pure water and recrystallized from chloroform (yield 58%).

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.95 Å and Uiso(H) = 1.2Ueq(C). H-atoms bonded to N3 were taken from the difference map and were allowed to refine with Uiso = 1.2 times Ueq of N3. The final difference map was free of any chemically significant features.

Figures

Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of (I) with displacement ellipsoids plotted at 50% probability level.
Fig. 2.
Unit cell packing of (I) showing hydrogen bonds with dashed lines; H-atoms not involved in H-bonds have been omitted.

Crystal data

C14H10FN3OF000 = 528
Mr = 255.25Dx = 1.498 Mg m3
Monoclinic, P21/cMelting point = 513–515 K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 11.629 (4) ÅCell parameters from 4617 reflections
b = 5.992 (3) Åθ = 3.6–27.5º
c = 16.389 (6) ŵ = 0.11 mm1
β = 97.69 (2)ºT = 173 (2) K
V = 1131.7 (8) Å3Prism, colorless
Z = 40.24 × 0.20 × 0.16 mm

Data collection

Nonius KappaCCD diffractometer2567 independent reflections
Radiation source: fine-focus sealed tube1935 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 173(2) Kθmax = 27.5º
ω and [var phi] scansθmin = 3.6º
Absorption correction: multi-scan(SORTAV; Blessing, 1997)h = −14→15
Tmin = 0.974, Tmax = 0.983k = −7→7
4617 measured reflectionsl = −21→21

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.044  w = 1/[σ2(Fo2) + (0.061P)2 + 0.4P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.25 e Å3
2567 reflectionsΔρmin = −0.21 e Å3
179 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (6)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F11.25524 (8)−0.3651 (2)0.33665 (7)0.0417 (3)
N10.78951 (10)−0.1133 (2)0.47173 (8)0.0212 (3)
N20.63490 (10)0.1576 (2)0.46105 (8)0.0214 (3)
N30.64102 (12)−0.1403 (3)0.55076 (8)0.0260 (3)
H310.5641 (17)−0.128 (3)0.5524 (11)0.031*
H320.6685 (16)−0.273 (4)0.5618 (11)0.031*
O10.68164 (9)0.57384 (19)0.30924 (7)0.0252 (3)
C10.94793 (12)−0.0974 (3)0.39086 (9)0.0209 (3)
C20.98310 (14)−0.3102 (3)0.41767 (10)0.0269 (4)
H20.9353−0.39480.44880.032*
C31.08664 (14)−0.4012 (3)0.39983 (10)0.0302 (4)
H31.1108−0.54560.41910.036*
C41.15313 (13)−0.2769 (3)0.35368 (10)0.0282 (4)
C51.12145 (14)−0.0680 (3)0.32395 (10)0.0280 (4)
H51.16900.01300.29150.034*
C61.01768 (13)0.0212 (3)0.34272 (10)0.0256 (4)
H60.99390.16490.32250.031*
C70.83900 (12)−0.0007 (3)0.41450 (9)0.0203 (3)
C80.79028 (13)0.1937 (3)0.37932 (9)0.0225 (3)
H80.82610.27370.33950.027*
C90.68719 (12)0.2674 (3)0.40437 (9)0.0200 (3)
C100.68960 (12)−0.0280 (3)0.49192 (9)0.0208 (3)
C110.62985 (12)0.4679 (3)0.36912 (9)0.0207 (3)
C120.53195 (13)0.5788 (3)0.38160 (10)0.0242 (4)
H120.48030.54060.41960.029*
C130.52194 (14)0.7633 (3)0.32661 (10)0.0279 (4)
H130.46200.87220.32060.033*
C140.61369 (14)0.7542 (3)0.28479 (10)0.0279 (4)
H140.62910.85840.24400.034*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0259 (5)0.0527 (7)0.0494 (6)0.0132 (5)0.0156 (4)−0.0045 (5)
N10.0169 (6)0.0245 (7)0.0224 (6)0.0016 (5)0.0036 (5)0.0019 (5)
N20.0184 (6)0.0232 (7)0.0229 (6)0.0012 (5)0.0041 (5)−0.0007 (5)
N30.0201 (7)0.0296 (8)0.0296 (7)0.0035 (6)0.0085 (5)0.0081 (6)
O10.0253 (6)0.0242 (6)0.0270 (6)0.0029 (5)0.0073 (5)0.0040 (5)
C10.0165 (7)0.0256 (8)0.0208 (7)0.0008 (6)0.0031 (6)−0.0022 (6)
C20.0242 (8)0.0277 (9)0.0300 (8)0.0039 (7)0.0078 (6)0.0032 (7)
C30.0280 (8)0.0300 (9)0.0330 (9)0.0095 (7)0.0063 (7)0.0016 (7)
C40.0185 (7)0.0379 (10)0.0285 (8)0.0071 (7)0.0048 (6)−0.0080 (7)
C50.0233 (8)0.0341 (10)0.0283 (8)−0.0024 (7)0.0100 (6)−0.0026 (7)
C60.0230 (7)0.0270 (8)0.0272 (8)0.0025 (7)0.0052 (6)0.0006 (7)
C70.0178 (7)0.0225 (8)0.0205 (7)−0.0013 (6)0.0020 (6)−0.0018 (6)
C80.0201 (7)0.0245 (8)0.0236 (7)0.0005 (6)0.0052 (6)0.0023 (6)
C90.0185 (7)0.0210 (8)0.0203 (7)−0.0004 (6)0.0013 (6)−0.0023 (6)
C100.0179 (7)0.0238 (8)0.0206 (7)−0.0004 (6)0.0030 (6)−0.0012 (6)
C110.0198 (7)0.0218 (8)0.0207 (7)−0.0007 (6)0.0033 (6)−0.0015 (6)
C120.0211 (7)0.0243 (8)0.0272 (8)0.0010 (6)0.0036 (6)−0.0025 (7)
C130.0271 (8)0.0228 (8)0.0324 (9)0.0047 (7)−0.0008 (7)−0.0002 (7)
C140.0328 (8)0.0216 (8)0.0283 (8)0.0035 (7)0.0004 (7)0.0051 (7)

Geometric parameters (Å, °)

F1—C41.3623 (18)C3—H30.9500
N1—C71.346 (2)C4—C51.376 (3)
N1—C101.3503 (19)C5—C61.391 (2)
N2—C101.346 (2)C5—H50.9500
N2—C91.348 (2)C6—H60.9500
N3—C101.359 (2)C7—C81.387 (2)
N3—H310.902 (19)C8—C91.390 (2)
N3—H320.87 (2)C8—H80.9500
O1—C141.3667 (19)C9—C111.456 (2)
O1—C111.3736 (18)C11—C121.357 (2)
C1—C21.392 (2)C12—C131.421 (2)
C1—C61.399 (2)C12—H120.9500
C1—C71.491 (2)C13—C141.344 (2)
C2—C31.388 (2)C13—H130.9500
C2—H20.9500C14—H140.9500
C3—C41.372 (2)
C7—N1—C10116.33 (13)N1—C7—C8121.46 (14)
C10—N2—C9115.37 (12)N1—C7—C1116.36 (14)
C10—N3—H31119.2 (12)C8—C7—C1122.18 (14)
C10—N3—H32115.2 (12)C7—C8—C9117.68 (14)
H31—N3—H32114.2 (17)C7—C8—H8121.2
C14—O1—C11106.44 (12)C9—C8—H8121.2
C2—C1—C6118.38 (14)N2—C9—C8122.34 (14)
C2—C1—C7119.86 (14)N2—C9—C11116.84 (13)
C6—C1—C7121.76 (14)C8—C9—C11120.82 (14)
C3—C2—C1121.33 (16)N2—C10—N1126.82 (14)
C3—C2—H2119.3N2—C10—N3117.09 (13)
C1—C2—H2119.3N1—C10—N3116.08 (14)
C4—C3—C2118.14 (16)C12—C11—O1109.78 (14)
C4—C3—H3120.9C12—C11—C9133.89 (15)
C2—C3—H3120.9O1—C11—C9116.32 (13)
F1—C4—C3118.27 (16)C11—C12—C13106.53 (15)
F1—C4—C5118.67 (15)C11—C12—H12126.7
C3—C4—C5123.06 (15)C13—C12—H12126.7
C4—C5—C6118.06 (15)C14—C13—C12106.75 (14)
C4—C5—H5121.0C14—C13—H13126.6
C6—C5—H5121.0C12—C13—H13126.6
C5—C6—C1121.00 (16)C13—C14—O1110.49 (14)
C5—C6—H6119.5C13—C14—H14124.8
C1—C6—H6119.5O1—C14—H14124.8
C6—C1—C2—C32.2 (2)C10—N2—C9—C11179.48 (13)
C7—C1—C2—C3−177.11 (14)C7—C8—C9—N20.3 (2)
C1—C2—C3—C4−1.0 (2)C7—C8—C9—C11−178.93 (13)
C2—C3—C4—F1179.47 (14)C9—N2—C10—N1−0.3 (2)
C2—C3—C4—C5−0.5 (2)C9—N2—C10—N3178.41 (13)
F1—C4—C5—C6−179.16 (14)C7—N1—C10—N2−0.3 (2)
C3—C4—C5—C60.8 (2)C7—N1—C10—N3−178.93 (13)
C4—C5—C6—C10.4 (2)C14—O1—C11—C120.17 (17)
C2—C1—C6—C5−1.8 (2)C14—O1—C11—C9179.54 (13)
C7—C1—C6—C5177.43 (14)N2—C9—C11—C121.5 (2)
C10—N1—C7—C80.8 (2)C8—C9—C11—C12−179.20 (16)
C10—N1—C7—C1−178.73 (12)N2—C9—C11—O1−177.67 (13)
C2—C1—C7—N110.0 (2)C8—C9—C11—O11.6 (2)
C6—C1—C7—N1−169.28 (13)O1—C11—C12—C130.07 (17)
C2—C1—C7—C8−169.55 (14)C9—C11—C12—C13−179.15 (16)
C6—C1—C7—C811.2 (2)C11—C12—C13—C14−0.29 (18)
N1—C7—C8—C9−0.9 (2)C12—C13—C14—O10.40 (18)
C1—C7—C8—C9178.66 (13)C11—O1—C14—C13−0.36 (17)
C10—N2—C9—C80.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H31···N2i0.90 (2)2.30 (2)3.190 (2)168 (2)
C5—H5···O1ii0.952.583.474 (2)157
C2—H2···N10.952.462.789 (2)100

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2621).

References

  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Bojarski, J. T., Mockrosz, J. L., Barton, H. J. & Paluchowska, M. H. (1985). Adv. Hetreocycl. Chem.38, 229–297.
  • Colorado, A. & Brodbelt, J. (1996). J. Mass Spectrom.31, 403–410. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332–o5334.
  • Gallagher, J. F., Goswami, S., Chatterjee, B., Jana, S. & Dutta, K. (2004). Acta Cryst. C60, o229–o231. [PubMed]
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Hueso, F., Illán, N. A., Moreno, M. N., Martínez, J. M. & Ramírez, M. J. (2003). J. Inorg. Biochem.94, 326–334. [PubMed]
  • Miranda, M. G., Norton, E. J., Feazell, R. P., Klausmeyer, K. K. & Pinney, K. G. (2006). J. Chem. Crystallogr.36, 309–314.
  • Miyazaki, Y., Matsunaga, S., Tang, J., Maeda, Y., Nakano, M., Philippe, R. J., Shibahara, M., Liu, W., Sato, H., Wang, L. & Notle, R. T. (2005). Bioorg. Med. Chem. Lett.15, 2203–2207. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Varga, L., Nagy, T., Kovesdi, I., Benet-Buchholz, J., Dorman, G., Urge, L. & Darvas, F. (2003). Tetrahedron, 59, 655–662.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography