PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1130–o1131.
Published online 2008 May 21. doi:  10.1107/S1600536808014864
PMCID: PMC2961455

2,2′-(Biphenyl-2,2′-diyldi­oxy)diaceto­hydrazide

Abstract

In the mol­ecule of the title compound, C16H18N4O4, the dihedral angle between the mean planes of the two benzene rings is 56.76 (5)°. The crystal structure reveals extensive inter­molecular hydrogen bonds between carbonyl O atoms and primary amines, as well as between primary and secondary amines of hydrazide, forming rings of R 2 2(10) and R 2 2(6) motifs, respectively. The structure is further stabilized by intra­molecular and non-classical hydrogen bonds of the types N—H(...)O and C—H(...)O, respectively. The structure does not show any π–π inter­actions.

Related literature

For related literature see: Dekeyser et al. (2003 [triangle]); Ali et al. (2008 [triangle]); Baudry et al. (2006 [triangle]); Bhat et al. (1974 [triangle]); Etter (1990 [triangle]); Kakefuda et al. (2002 [triangle]); Litvinchuk et al. (2004 [triangle]); Priebe et al. (2008 [triangle]); Sisson et al. (2006 [triangle]); Thaker & Patel (2008 [triangle]); Yan et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1130-scheme1.jpg

Experimental

Crystal data

  • C16H18N4O4
  • M r = 330.34
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1130-efi1.jpg
  • a = 8.4041 (17) Å
  • b = 9.7148 (19) Å
  • c = 10.465 (2) Å
  • α = 99.27 (3)°
  • β = 92.50 (3)°
  • γ = 113.85 (3)°
  • V = 765.7 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 153 (2) K
  • 0.31 × 0.29 × 0.22 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (REQAB; Jacobson, 1998 [triangle]) T min = 0.968, T max = 0.977
  • 5673 measured reflections
  • 2695 independent reflections
  • 2440 reflections with I > 2σ(I)
  • R int = 0.009

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.092
  • S = 1.05
  • 2695 reflections
  • 237 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014864/pv2081sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014864/pv2081Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Higher Education Commission of Pakistan for financial support.

supplementary crystallographic information

Comment

Biphenyl hydrazides are of crucial importance in the design and synthesis of novel advanced functional materials (Thaker & Patel, 2008) and compounds of biological importance (Kakefuda et al., 2002; Dekeyser et al., 2003). Our interest in the synthesis of biphenyl dihydrazide arose from the fact that we wanted to attach macrocycles like porphyrin to diphenyl dicarboxylic acid and carboxylic substituted oligo(p-phenylene)s (Litvinchuk et al., 2004) to form functionalized pores (Sisson et al., 2006; Baudry et al., 2006). The coupling of amino-substituted macrocycles gave poor yields so we changed the strategy and synthesized carboxylic substituted macrocycles and hydrazide substituted biphenyls. Studies on the coupling of these biphenyl hydrazides and macrocycles are in progress. In this paper, we report the synthesis and crystal structure of the title compound, (I).

The molecules of the title compound (Fig. 1) are held together by intermolecular hydrogen bonds involving carbonyl O-atoms and primary amines as well as primary amines and secondary amines of the type N—H···O and N—H···H, respectively, which stabilize the crystal structure (Fig. 2) resulting in ten and six membered which may be described in the graph set notation as R22(10) and R22(6) (Etter, 1990). There are three intramolecular hydrogen bonds in addition to non-classical hydrogen bonds involving phenyl H-atoms and a carbonyl oxygen and a primary amine; details of hydrogen bonding geometry have been provided in Table 1.

The C1—O1 and C16—O4 distances in (I) are 1.2284 (17)Å and 1.2338 (16) Å, respectively, typical of double bonds (Yan et al., 1993), whereas the distances C1—N2 and C16—N3 at 1.3320 (18)Å and 1.3291 (18)Å are consistent with those reported (Priebe et al., 2008), suggesting partial double bond character. Similarly, the distances N1—N2 and N3—N4, 1.4198 (17)Å and 1.4196 (17) Å, respectively, are typical for a single bond, which are in agreement with those of the analogous compound (Bhat et al., 1974), suggesting that the title compound exists as resonance hybrid between a polar and a neutral form.

Experimental

Diethyl 2,2'-(biphenyl-2,2'-diylbis(oxy))diacetate (500 mg, 1.4 mmol) was refluxed in the presence of hydrazine hydrate (5 ml, 103 mmol) in ethanol (10 ml) at 353 K for 2 h, the reaction mixture was cooled down to room temperature and then poured into 10 ml of water. The reaction mixture was extracted three times with ethyl acetate. The combined organic phases were concentrated under reduced pressure. The crude residue was dissolved in ethanol and slow evaporation of ethanol afforded colorless crystals (276 mg, 60% yield) suitable for XRD analysis.

Refinement

Positions of the amine H atoms were located from difference Fourier maps and were allowed to refine with Uiso(H) = 1.2Ueq (parent N-atom). The remaining H atoms were geometrically placed and treated as riding atoms with C—H = 0.95 Å (aryl) and 0.98 Å (methylene), and Uiso(H) = 1.2Ueq (parent C-atom).

Figures

Fig. 1.
Molecular structure of the the title compound showing 50% probability displacement ellipsoids with arbitrary shperes for H atoms.
Fig. 2.
Packing diagram of (I) with hydrogen bonds viewed along the b axis. Symmetry codes for A through D are: 1 - x,1 - y,1 - z; x,1 + y,z; 1 - x,-y,1 - z; and 1 - x,1 - y,2 - z, respectively.

Crystal data

C16H18N4O4Z = 2
Mr = 330.34F000 = 348
Triclinic, P1Dx = 1.433 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.4041 (17) ÅCell parameters from 2518 reflections
b = 9.7148 (19) Åθ = 2.7–26.4º
c = 10.465 (2) ŵ = 0.11 mm1
α = 99.27 (3)ºT = 153 (2) K
β = 92.50 (3)ºChip, colorless
γ = 113.85 (3)º0.31 × 0.29 × 0.22 mm
V = 765.7 (3) Å3

Data collection

Rigaku Mercury CCD diffractometer2695 independent reflections
Radiation source: Sealed Tube2440 reflections with I > 2σ(I)
Monochromator: Graphite MonochromatorRint = 0.009
Detector resolution: 14.6306 pixels mm-1θmax = 25.2º
T = 153(2) Kθmin = 2.0º
ω scansh = −10→9
Absorption correction: multi-scan(REQAB; Jacobson, 1998)k = −10→11
Tmin = 0.968, Tmax = 0.977l = −12→12
5673 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092  w = 1/[σ2(Fo2) + (0.0447P)2 + 0.3477P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2695 reflectionsΔρmax = 0.20 e Å3
237 parametersΔρmin = −0.20 e Å3
6 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.32268 (15)−0.23766 (13)−0.20890 (9)0.0317 (3)
O20.26996 (14)−0.02884 (11)0.08294 (9)0.0263 (2)
O30.33765 (13)0.10884 (10)0.50896 (8)0.0242 (2)
O40.41183 (15)0.35080 (12)0.81794 (9)0.0313 (3)
N10.28627 (18)−0.42946 (14)−0.03033 (12)0.0282 (3)
H1A0.389 (2)−0.419 (2)0.0137 (16)0.034*
H1B0.293 (2)−0.452 (2)−0.1191 (14)0.034*
N20.28707 (16)−0.28115 (14)−0.00437 (11)0.0253 (3)
H20.253 (2)−0.254 (2)0.0732 (15)0.035 (5)*
N30.41999 (16)0.39435 (13)0.61151 (11)0.0236 (3)
H30.428 (2)0.362 (2)0.5272 (14)0.038 (5)*
N40.46353 (18)0.55390 (14)0.64554 (12)0.0271 (3)
H4A0.544 (2)0.5916 (19)0.7182 (15)0.032*
H4B0.364 (2)0.565 (2)0.6732 (16)0.032*
C10.29940 (17)−0.19832 (16)−0.09628 (12)0.0216 (3)
C20.28191 (18)−0.04884 (16)−0.05358 (12)0.0217 (3)
H2B0.38510.0379−0.07260.026*
H2C0.1756−0.0523−0.10130.026*
C30.21044 (17)0.07599 (15)0.14010 (12)0.0196 (3)
C40.20643 (18)0.19491 (15)0.08338 (13)0.0224 (3)
H4C0.24370.2059−0.00020.027*
C50.14735 (18)0.29724 (16)0.15019 (14)0.0253 (3)
H5A0.14300.37790.11160.030*
C60.09474 (18)0.28244 (15)0.27275 (14)0.0246 (3)
H6A0.05440.35270.31810.029*
C70.10118 (17)0.16440 (15)0.32919 (13)0.0212 (3)
H7A0.06640.15570.41370.025*
C80.15766 (16)0.05875 (14)0.26424 (12)0.0187 (3)
C90.15926 (17)−0.07024 (15)0.32413 (12)0.0187 (3)
C100.25033 (17)−0.04279 (15)0.44785 (12)0.0189 (3)
C110.25260 (18)−0.16331 (16)0.50320 (13)0.0229 (3)
H11A0.3164−0.14310.58640.028*
C120.1608 (2)−0.31304 (16)0.43565 (14)0.0261 (3)
H12A0.1631−0.39560.47240.031*
C130.0658 (2)−0.34330 (16)0.31497 (14)0.0271 (3)
H13A0.0014−0.44620.27000.033*
C140.06546 (18)−0.22235 (15)0.26023 (13)0.0229 (3)
H14A0.0000−0.24360.17760.028*
C150.36921 (19)0.14095 (16)0.64783 (12)0.0242 (3)
H15A0.47200.12280.67570.029*
H15B0.26630.07170.68370.029*
C160.40281 (17)0.30626 (16)0.69949 (12)0.0218 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0463 (7)0.0413 (6)0.0184 (5)0.0285 (5)0.0086 (4)0.0069 (4)
O20.0425 (6)0.0299 (5)0.0148 (5)0.0231 (5)0.0048 (4)0.0048 (4)
O30.0358 (6)0.0189 (5)0.0135 (4)0.0073 (4)0.0008 (4)0.0026 (4)
O40.0438 (6)0.0325 (6)0.0156 (5)0.0157 (5)0.0017 (4)0.0004 (4)
N10.0377 (7)0.0248 (6)0.0259 (6)0.0165 (6)0.0055 (5)0.0054 (5)
N20.0358 (7)0.0251 (6)0.0193 (6)0.0164 (5)0.0066 (5)0.0051 (5)
N30.0307 (6)0.0196 (6)0.0179 (6)0.0087 (5)0.0049 (5)0.0008 (4)
N40.0358 (7)0.0210 (6)0.0224 (6)0.0111 (5)0.0055 (5)0.0004 (5)
C10.0205 (6)0.0282 (7)0.0173 (6)0.0112 (6)0.0020 (5)0.0045 (5)
C20.0250 (7)0.0252 (7)0.0150 (6)0.0103 (6)0.0024 (5)0.0051 (5)
C30.0210 (6)0.0182 (6)0.0184 (6)0.0079 (5)−0.0007 (5)0.0016 (5)
C40.0239 (7)0.0216 (7)0.0204 (6)0.0071 (5)0.0010 (5)0.0075 (5)
C50.0266 (7)0.0184 (7)0.0311 (7)0.0081 (6)−0.0006 (6)0.0094 (6)
C60.0265 (7)0.0183 (7)0.0300 (7)0.0116 (6)0.0013 (6)0.0026 (5)
C70.0215 (7)0.0202 (7)0.0208 (6)0.0080 (5)0.0014 (5)0.0032 (5)
C80.0197 (6)0.0159 (6)0.0185 (6)0.0058 (5)−0.0006 (5)0.0029 (5)
C90.0217 (6)0.0187 (7)0.0179 (6)0.0101 (5)0.0051 (5)0.0044 (5)
C100.0222 (6)0.0173 (6)0.0169 (6)0.0080 (5)0.0051 (5)0.0025 (5)
C110.0281 (7)0.0259 (7)0.0183 (6)0.0138 (6)0.0036 (5)0.0071 (5)
C120.0351 (8)0.0219 (7)0.0271 (7)0.0154 (6)0.0063 (6)0.0102 (6)
C130.0337 (8)0.0175 (7)0.0289 (7)0.0102 (6)0.0016 (6)0.0030 (5)
C140.0279 (7)0.0207 (7)0.0200 (6)0.0105 (6)0.0003 (5)0.0028 (5)
C150.0325 (7)0.0252 (7)0.0134 (6)0.0104 (6)0.0021 (5)0.0041 (5)
C160.0204 (6)0.0251 (7)0.0176 (6)0.0080 (5)0.0017 (5)0.0019 (5)

Geometric parameters (Å, °)

O1—C11.2284 (17)C4—H4C0.9500
O2—C31.3736 (16)C5—C61.385 (2)
O2—C21.4242 (15)C5—H5A0.9500
O3—C101.3779 (17)C6—C71.3901 (19)
O3—C151.4259 (15)C6—H6A0.9500
O4—C161.2338 (16)C7—C81.3922 (19)
N1—N21.4198 (17)C7—H7A0.9500
N1—H1A0.925 (14)C8—C91.4931 (18)
N1—H1B0.930 (14)C9—C141.3949 (19)
N2—C11.3320 (18)C9—C101.4037 (19)
N2—H20.907 (14)C10—C111.3937 (19)
N3—C161.3291 (18)C11—C121.387 (2)
N3—N41.4196 (17)C11—H11A0.9500
N3—H30.904 (14)C12—C131.386 (2)
N4—H4A0.914 (14)C12—H12A0.9500
N4—H4B0.936 (14)C13—C141.3888 (19)
C1—C21.5164 (19)C13—H13A0.9500
C2—H2B0.9900C14—H14A0.9500
C2—H2C0.9900C15—C161.514 (2)
C3—C41.3924 (19)C15—H15A0.9900
C3—C81.4046 (18)C15—H15B0.9900
C4—C51.389 (2)
C3—O2—C2119.52 (10)C7—C6—H6A120.1
C10—O3—C15117.33 (10)C6—C7—C8121.29 (12)
N2—N1—H1A105.6 (11)C6—C7—H7A119.4
N2—N1—H1B106.5 (11)C8—C7—H7A119.4
H1A—N1—H1B107.7 (15)C7—C8—C3117.98 (12)
C1—N2—N1122.76 (12)C7—C8—C9120.86 (11)
C1—N2—H2119.5 (11)C3—C8—C9121.16 (12)
N1—N2—H2116.3 (11)C14—C9—C10117.93 (12)
C16—N3—N4123.00 (11)C14—C9—C8120.81 (11)
C16—N3—H3121.4 (12)C10—C9—C8121.23 (12)
N4—N3—H3114.3 (12)O3—C10—C11122.79 (11)
N3—N4—H4A106.8 (11)O3—C10—C9116.07 (11)
N3—N4—H4B107.6 (11)C11—C10—C9121.13 (12)
H4A—N4—H4B105.1 (15)C12—C11—C10119.35 (12)
O1—C1—N2123.62 (13)C12—C11—H11A120.3
O1—C1—C2120.88 (12)C10—C11—H11A120.3
N2—C1—C2115.50 (11)C13—C12—C11120.59 (13)
O2—C2—C1108.04 (11)C13—C12—H12A119.7
O2—C2—H2B110.1C11—C12—H12A119.7
C1—C2—H2B110.1C12—C13—C14119.61 (13)
O2—C2—H2C110.1C12—C13—H13A120.2
C1—C2—H2C110.1C14—C13—H13A120.2
H2B—C2—H2C108.4C13—C14—C9121.34 (12)
O2—C3—C4123.65 (12)C13—C14—H14A119.3
O2—C3—C8115.15 (11)C9—C14—H14A119.3
C4—C3—C8121.17 (12)O3—C15—C16109.67 (11)
C5—C4—C3119.38 (13)O3—C15—H15A109.7
C5—C4—H4C120.3C16—C15—H15A109.7
C3—C4—H4C120.3O3—C15—H15B109.7
C6—C5—C4120.42 (12)C16—C15—H15B109.7
C6—C5—H5A119.8H15A—C15—H15B108.2
C4—C5—H5A119.8O4—C16—N3124.25 (13)
C5—C6—C7119.76 (13)O4—C16—C15119.25 (12)
C5—C6—H6A120.1N3—C16—C15116.49 (11)
N1—N2—C1—O1−5.0 (2)C7—C8—C9—C10−55.87 (18)
N1—N2—C1—C2174.76 (12)C3—C8—C9—C10125.09 (14)
C3—O2—C2—C1−163.98 (11)C15—O3—C10—C11−25.80 (18)
O1—C1—C2—O2−175.55 (12)C15—O3—C10—C9155.02 (12)
N2—C1—C2—O24.71 (16)C14—C9—C10—O3−178.44 (11)
C2—O2—C3—C4−18.76 (19)C8—C9—C10—O3−0.38 (18)
C2—O2—C3—C8163.23 (12)C14—C9—C10—C112.38 (19)
O2—C3—C4—C5−178.61 (12)C8—C9—C10—C11−179.57 (12)
C8—C3—C4—C5−0.7 (2)O3—C10—C11—C12179.79 (12)
C3—C4—C5—C60.7 (2)C9—C10—C11—C12−1.1 (2)
C4—C5—C6—C70.0 (2)C10—C11—C12—C13−0.8 (2)
C5—C6—C7—C8−0.8 (2)C11—C12—C13—C141.2 (2)
C6—C7—C8—C30.82 (19)C12—C13—C14—C90.1 (2)
C6—C7—C8—C9−178.24 (12)C10—C9—C14—C13−1.9 (2)
O2—C3—C8—C7178.01 (11)C8—C9—C14—C13−179.96 (13)
C4—C3—C8—C7−0.05 (19)C10—O3—C15—C16−159.34 (11)
O2—C3—C8—C9−2.93 (18)N4—N3—C16—O44.7 (2)
C4—C3—C8—C9179.01 (12)N4—N3—C16—C15−175.62 (12)
C7—C8—C9—C14122.12 (14)O3—C15—C16—O4171.27 (12)
C3—C8—C9—C14−56.91 (18)O3—C15—C16—N3−8.42 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.924 (14)2.192 (15)3.059 (2)155.7 (15)
N1—H1B···O4ii0.930 (14)2.510 (17)3.0112 (18)114.1 (13)
N3—H3···N4iii0.900 (13)2.191 (15)2.9524 (18)141.9 (14)
N4—H4B···O1iv0.936 (14)2.267 (16)2.9873 (18)133.3 (14)
N1—H1B···O10.930 (14)2.348 (17)2.7873 (18)108.6 (13)
N2—H2···O20.906 (14)2.118 (17)2.5375 (16)107.1 (13)
N3—H3···O30.900 (13)2.230 (16)2.5977 (17)103.9 (12)
C5—H5A···N1v0.952.533.359 (2)146
C11—H11A···O1vi0.952.473.292 (2)145

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y−1, z−1; (iii) −x+1, −y+1, −z+1; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2081).

References

  • Ali, Q., Shah, M. R. & VanDerveer, D. (2008). Acta Cryst. E64, o910. [PMC free article] [PubMed]
  • Baudry, Y., Litvinchuk, S., Mareda, J., Nishihara, M., Pasnin, D., Shah, M. R., Sakai, N. & Matile, S. (2006). Adv. Funct. Mater 16, 169–179.
  • Bhat, T. N., Singh, T. P. & Vijayan, M. (1974). Acta Cryst. B30, 2921–2922.
  • Dekeyser, M. A., McDonald, P. T. & Angle Jr, G. W. (2003). Chimia 57, 702–704.
  • Etter, M. C. (1990). Acc. Chem. Res 22, 120–126.
  • Jacobson, R. (1998). REQAB Molecular Structure Corporation, The Woodlands, Texas, USA.
  • Kakefuda, A., Suzuki, T., Tobe, T., Tahara, A., Sakamoto, S. & Tsukamoto, S. (2002). Bioorg. Med. Chem 10, 1905–1912. [PubMed]
  • Litvinchuk, S., Bollot, G., Mareda, J., Som, A., Ronan, D., Shah, M. R., Perrottet, P., Sakai, N. & Matile, S. (2004). J. Am. Chem. Soc.126, 10067-10075. [PubMed]
  • Priebe, J. P., Mello, R. S., Nome, F. & Bortoluzzi, A. J. (2008). Acta Cryst. E64, o302–o303. [PMC free article] [PubMed]
  • Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sisson, A. L., Shah, M. R., Bhosale, S. & Matile, S. (2006). Chem. Soc. Rev.35, 1269–1286. [PubMed]
  • Thaker, B. T. & Patel, P. (2008). Mol. Cryst. Liq. Cryst.482, 3–20.
  • Yan, S. P., Cheng, P., Liao, D. Z., Bai, L. J., Jiang, Z. H., Wang, G. L., Wang, R. J. & Yao, X. K. (1993). J. Nankai Univ.2, 19–23.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography