PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1105–o1106.
Published online 2008 May 17. doi:  10.1107/S1600536808014360
PMCID: PMC2961452

Chloro­thia­zide–pyridine (1/3)

Abstract

In the title compound, C7H6ClN3O4S2·3C5H5N, (systematic name: 6-chloro-2H-1,2,4-benzothia­diazine-7-sulfonamide 1,1-dioxide pyridine tris­olvate), chloro­thia­zide forms a 1:3 solvate with pyridine. The crystal structure is stabilized by strong inter­molecular N—H(...)N hydrogen bonds.

Related literature

For details on experimental methods used to obtain this form, see: Florence et al. (2003 [triangle], 2006 [triangle]). For previous studies on the non-solvated form of chloro­thaizide, see: Dupont & Dideberg (1970 [triangle]); Shankland et al. (1997 [triangle]). For solvated forms see: Johnston et al. (2007a [triangle],b [triangle]); Johnston, Florence & Kennedy (2007 [triangle]); Fernandes, Florence et al. (2006 [triangle]); Fernandes, Shankland et al. (2007 [triangle]). For studies of inter­molecular inter­actions in the related thia­zide diuretic, hydro­chloro­thia­zide, see: Johnston, Florence, Shankland et al. (2007 [triangle]). For additional literature on related thia­zide compounds, see: Fabbiani et al. (2007 [triangle]); Fernandes, Johnston et al. (2007 [triangle]); Fernandes, Leech et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1105-scheme1.jpg

Experimental

Crystal data

  • C7H6ClN3O4S2·3C5H5N
  • M r = 533.02
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1105-efi1.jpg
  • a = 9.0697 (15) Å
  • b = 11.863 (2) Å
  • c = 11.875 (2) Å
  • α = 100.691 (7)°
  • β = 98.667 (8)°
  • γ = 98.134 (7)°
  • V = 1222.1 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 123 (2) K
  • 0.18 × 0.10 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 14598 measured reflections
  • 4219 independent reflections
  • 2998 reflections with I > 2σ(I)
  • R int = 0.085

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.103
  • S = 1.04
  • 4219 reflections
  • 328 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.49 e Å−3

Data collection: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014360/bx2144sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014360/bx2144Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (www.cposs.org.uk).

supplementary crystallographic information

Comment

Chlorothiazide (CT) is a thiazide diuretic drug that is known to crystallize in at least one non-solvated form (Dupont & Dideberg, 1970; Shankland et al., 1997). The title compound was produced as part of an automated parallel crystallization study (Florence et al., 2006) of CT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction methodology to investigate the basic science underlying the solid-state diversity of thiazide diuretics including hydrochlorothiazide (Johnston et al., 2007), hydroflumethiazide (Fernandes, Johnston, A., et al., 2007), trichlormethiazide (Fernandes, P., Leech, C.K. et al., 2007), bendroflumethaizide (Fabbiani et al., 2007) and CT. The sample was identified as a novel form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent manual recrystallization from a saturated pyridine solution by slow evaporation at 278 K yielded a sample suitable for single-crystal X-ray diffraction (Fig. 1).

The molecules crystallize in space group P1 with one CT and three pyridine molecules in the asymmetric unit. The structure contains three unique N—H···N contacts (Table 1) between CT and solvent molecules whereby all hydrogen bond donors in CT, N1—H5, N1—H6 and N2—H2, are connected to a distinct pyridine molecule. The crystal structure is further stabilized by extensive offset face-to-face π^···^π interactions. All contacts combine to form a layered structure with layers comprising CT plus pyridine (residue B, Fig 1) alternating with pyridine residues C and D stacking in the [001] direction (Fig. 2).

Experimental

A single-crystal sample of the title compound was recrystallized from a saturated pyridine solution by isothermal solvent evaporation at 278 oK.

Refinement

The 3 H-atoms attached to N-atoms were located by difference synthesis and refined isotropically. All other H-atoms were constrained to idealized geometries using a riding model with Uĩso~(H)=1.2U~eq~(C) and C—H=0.95 \%A.

Figures

Fig. 1.
The molecular structure and atomic labelling of CT pyridine (1/3), showing 50% probablility displacement ellipsoids. 'S' in atomic labelling refers to solvent molecule.
Fig. 2.
The crystal packing in CT pyridine (1/3), viewed down the a-axis. Residues A, B, C and D are coloured green, blue, red and black.

Crystal data

C7H6ClN3O4S2·3C5H5NZ = 2
Mr = 533.02F000 = 552
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: P -1Mo Kα radiation λ = 0.71073 Å
a = 9.0697 (15) ÅCell parameters from 3968 reflections
b = 11.863 (2) Åθ = 1.0–27.1º
c = 11.875 (2) ŵ = 0.37 mm1
α = 100.691 (7)ºT = 123 (2) K
β = 98.667 (8)ºCut fragment, colourless
γ = 98.134 (7)º0.18 × 0.10 × 0.05 mm
V = 1222.1 (4) Å3

Data collection

Nonius KappaCCD diffractometer2998 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.085
Monochromator: graphiteθmax = 25.3º
T = 123(2) Kθmin = 1.8º
[var phi] and ω scansh = −10→0
Absorption correction: nonek = −13→14
14598 measured reflectionsl = −13→14
4219 independent reflections

Refinement

Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0253P)2 + 1.8286P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.059(Δ/σ)max < 0.001
wR(F2) = 0.103Δρmax = 0.34 e Å3
S = 1.04Δρmin = −0.49 e Å3
4219 reflectionsExtinction correction: none
328 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1−0.11042 (9)0.34675 (7)0.54702 (7)0.0161 (2)
S10.24543 (9)−0.02698 (7)0.33227 (7)0.0127 (2)
S2−0.16390 (10)0.25714 (7)0.26176 (7)0.0134 (2)
O30.3649 (3)0.0349 (2)0.2890 (2)0.0213 (6)
O10.1454 (3)−0.1213 (2)0.2501 (2)0.0230 (6)
O2−0.1320 (3)0.20934 (19)0.14895 (19)0.0185 (6)
O4−0.3120 (2)0.2257 (2)0.28715 (19)0.0197 (6)
N30.3205 (3)−0.0768 (2)0.4406 (2)0.0145 (7)
N20.2459 (3)0.0587 (2)0.5857 (3)0.0121 (7)
N1−0.1235 (4)0.3939 (3)0.2847 (3)0.0178 (7)
C30.3177 (4)−0.0285 (3)0.5481 (3)0.0137 (8)
H30.3730−0.05870.60680.016*
C20.1548 (3)0.1084 (3)0.5117 (3)0.0093 (7)
C70.1389 (3)0.0736 (3)0.3908 (3)0.0098 (7)
C10.0429 (3)0.1218 (3)0.3176 (3)0.0101 (7)
H10.03200.09680.23560.012*
C5−0.0367 (3)0.2054 (3)0.3622 (3)0.0098 (7)
C6−0.0171 (4)0.2406 (3)0.4846 (3)0.0108 (8)
C40.0752 (4)0.1928 (3)0.5575 (3)0.0103 (7)
H40.08510.21730.63960.012*
N1S0.7057 (3)0.5432 (2)0.4150 (3)0.0195 (7)
C1S0.6985 (4)0.5848 (3)0.5263 (3)0.0202 (9)
H1S0.76240.56080.58500.024*
C2S0.6037 (4)0.6605 (3)0.5610 (3)0.0242 (9)
H2S0.60200.68700.64130.029*
C3S0.5120 (4)0.6967 (3)0.4769 (4)0.0291 (10)
H3S0.44690.75000.49810.035*
C4S0.5158 (4)0.6547 (3)0.3615 (4)0.0308 (10)
H4S0.45200.67690.30140.037*
C5S0.6150 (4)0.5793 (3)0.3352 (3)0.0255 (9)
H5S0.61860.55160.25550.031*
N2S0.2984 (3)0.1270 (2)0.8267 (2)0.0200 (7)
C6S0.2000 (4)0.1232 (3)0.9002 (3)0.0237 (9)
H6S0.09530.11600.86980.028*
C7S0.2439 (5)0.1292 (3)1.0180 (3)0.0335 (11)
H7S0.17050.12461.06690.040*
C8S0.3955 (5)0.1419 (3)1.0634 (3)0.0319 (11)
H8S0.42880.14671.14410.038*
C9S0.4979 (4)0.1475 (3)0.9891 (3)0.0263 (10)
H9S0.60350.15701.01770.032*
C10S0.4444 (4)0.1391 (3)0.8729 (3)0.0237 (9)
H10S0.51590.14200.82230.028*
N3S0.1270 (3)0.4933 (3)0.1813 (3)0.0245 (8)
C11S0.2125 (4)0.4257 (3)0.1287 (3)0.0302 (10)
H11S0.22210.35420.15170.036*
C12S0.2882 (4)0.4540 (4)0.0421 (3)0.0336 (10)
H12S0.34860.40340.00710.040*
C13S0.2739 (4)0.5576 (4)0.0079 (3)0.0313 (10)
H13S0.32330.5792−0.05200.038*
C14S0.1872 (4)0.6288 (3)0.0617 (3)0.0261 (9)
H14S0.17600.70080.04030.031*
C15S0.1165 (4)0.5939 (3)0.1478 (3)0.0222 (9)
H15S0.05730.64400.18510.027*
H20.261 (4)0.083 (3)0.665 (3)0.034 (12)*
H5−0.166 (4)0.433 (3)0.334 (3)0.036 (13)*
H6−0.046 (4)0.420 (3)0.262 (3)0.014 (10)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0195 (5)0.0159 (5)0.0153 (5)0.0021 (4)0.0067 (4)0.0090 (4)
S10.0133 (5)0.0150 (5)0.0108 (5)0.0021 (4)0.0024 (4)0.0065 (4)
S20.0141 (5)0.0152 (5)0.0120 (5)0.0059 (4)−0.0002 (4)0.0045 (4)
O30.0187 (14)0.0303 (15)0.0237 (15)0.0147 (12)0.0141 (12)0.0108 (11)
O10.0245 (15)0.0209 (14)0.0180 (14)−0.0067 (11)−0.0053 (11)0.0089 (11)
O20.0274 (14)0.0209 (14)0.0083 (13)0.0029 (10)0.0014 (11)0.0101 (11)
O40.0137 (13)0.0261 (14)0.0191 (14)0.0106 (11)−0.0027 (11)0.0014 (11)
N30.0125 (16)0.0176 (16)0.0158 (18)0.0070 (13)0.0019 (13)0.0067 (13)
N20.0136 (16)0.0164 (16)0.0066 (18)0.0049 (13)−0.0016 (13)0.0037 (13)
N10.0214 (19)0.0163 (17)0.022 (2)0.0100 (14)0.0121 (16)0.0064 (15)
C30.0083 (18)0.0125 (18)0.020 (2)0.0083 (16)0.0000 (16)−0.0016 (15)
C20.0046 (17)0.0105 (17)0.012 (2)0.0037 (14)0.0000 (15)−0.0015 (14)
C70.0072 (18)0.0103 (17)0.011 (2)0.0013 (14)0.0008 (15)−0.0012 (14)
C10.0107 (18)0.0127 (17)0.0054 (19)0.0002 (14)0.0006 (15)−0.0001 (14)
C50.0070 (18)0.0113 (18)0.010 (2)0.0038 (14)−0.0009 (15)−0.0006 (14)
C60.0084 (18)0.0083 (17)0.016 (2)0.0009 (14)0.0062 (15)0.0008 (14)
C40.0108 (18)0.0115 (17)0.0081 (19)0.0037 (14)0.0016 (15)−0.0013 (14)
N1S0.0182 (17)0.0141 (16)0.026 (2)0.0021 (14)0.0053 (15)0.0029 (13)
C1S0.020 (2)0.016 (2)0.024 (2)0.0078 (17)−0.0011 (17)−0.0004 (16)
C2S0.022 (2)0.018 (2)0.032 (2)0.0007 (17)0.0116 (19)−0.0018 (17)
C3S0.015 (2)0.012 (2)0.060 (3)0.004 (2)0.009 (2)0.0043 (17)
C4S0.019 (2)0.026 (2)0.044 (3)0.017 (2)−0.011 (2)−0.0025 (18)
C5S0.028 (2)0.023 (2)0.023 (2)0.0068 (18)0.0018 (19)−0.0024 (18)
N2S0.0232 (19)0.0243 (18)0.0105 (17)0.0013 (13)−0.0039 (15)0.0077 (14)
C6S0.018 (2)0.021 (2)0.026 (3)−0.0027 (17)0.0002 (18)−0.0032 (17)
C7S0.042 (3)0.034 (2)0.021 (3)0.0019 (18)0.017 (2)−0.011 (2)
C8S0.053 (3)0.025 (2)0.012 (2)0.0080 (17)−0.002 (2)−0.006 (2)
C9S0.027 (2)0.022 (2)0.025 (3)0.0052 (17)−0.011 (2)0.0027 (18)
C10S0.024 (2)0.029 (2)0.019 (2)0.0038 (17)0.0054 (19)0.0084 (18)
N3S0.031 (2)0.0234 (18)0.0208 (19)0.0043 (14)0.0106 (15)0.0060 (15)
C11S0.038 (3)0.024 (2)0.031 (3)0.0078 (18)0.008 (2)0.0084 (19)
C12S0.036 (3)0.041 (3)0.029 (3)0.007 (2)0.016 (2)0.012 (2)
C13S0.033 (2)0.043 (3)0.019 (2)0.009 (2)0.011 (2)−0.001 (2)
C14S0.033 (2)0.024 (2)0.021 (2)0.0096 (17)0.0016 (19)0.0002 (19)
C15S0.026 (2)0.020 (2)0.019 (2)0.0021 (17)0.0019 (18)0.0035 (17)

Geometric parameters (Å, °)

Cl1—C61.730 (3)C2S—H2S0.9500
S1—O31.435 (2)C3S—C4S1.376 (6)
S1—O11.439 (2)C3S—H3S0.9500
S1—N31.613 (3)C4S—C5S1.384 (5)
S1—C71.749 (3)C4S—H4S0.9500
S2—O41.434 (2)C5S—H5S0.9500
S2—O21.443 (2)N2S—C10S1.332 (4)
S2—N11.575 (3)N2S—C6S1.340 (4)
S2—C51.785 (3)C6S—C7S1.381 (5)
N3—C31.304 (4)C6S—H6S0.9500
N2—C31.342 (4)C7S—C8S1.376 (5)
N2—C21.383 (4)C7S—H7S0.9500
N2—H20.91 (4)C8S—C9S1.377 (5)
N1—H50.85 (4)C8S—H8S0.9500
N1—H60.83 (3)C9S—C10S1.372 (5)
C3—H30.9500C9S—H9S0.9500
C2—C41.393 (4)C10S—H10S0.9500
C2—C71.398 (4)N3S—C11S1.330 (5)
C7—C11.392 (4)N3S—C15S1.338 (4)
C1—C51.381 (4)C11S—C12S1.384 (5)
C1—H10.9500C11S—H11S0.9500
C5—C61.413 (4)C12S—C13S1.381 (5)
C6—C41.368 (4)C12S—H12S0.9500
C4—H40.9500C13S—C14S1.371 (5)
N1S—C5S1.331 (5)C13S—H13S0.9500
N1S—C1S1.337 (4)C14S—C15S1.381 (5)
C1S—C2S1.380 (5)C14S—H14S0.9500
C1S—H1S0.9500C15S—H15S0.9500
C2S—C3S1.372 (5)
?···??
O3—S1—O1116.53 (15)C3S—C2S—C1S118.5 (4)
O3—S1—N3108.29 (14)C3S—C2S—H2S120.8
O1—S1—N3108.71 (14)C1S—C2S—H2S120.8
O3—S1—C7108.12 (14)C2S—C3S—C4S119.0 (4)
O1—S1—C7109.09 (14)C2S—C3S—H3S120.5
N3—S1—C7105.55 (15)C4S—C3S—H3S120.5
O4—S2—O2119.51 (14)C3S—C4S—C5S118.3 (4)
O4—S2—N1108.62 (17)C3S—C4S—H4S120.8
O2—S2—N1108.54 (16)C5S—C4S—H4S120.8
O4—S2—C5106.13 (14)N1S—C5S—C4S124.0 (4)
O2—S2—C5104.48 (14)N1S—C5S—H5S118.0
N1—S2—C5109.16 (16)C4S—C5S—H5S118.0
C3—N3—S1121.8 (2)C10S—N2S—C6S116.7 (3)
C3—N2—C2123.4 (3)N2S—C6S—C7S123.0 (4)
C3—N2—H2115 (2)N2S—C6S—H6S118.5
C2—N2—H2122 (2)C7S—C6S—H6S118.5
S2—N1—H5118 (3)C8S—C7S—C6S119.0 (4)
S2—N1—H6115 (2)C8S—C7S—H7S120.5
H5—N1—H6125 (3)C6S—C7S—H7S120.5
N3—C3—N2127.6 (3)C7S—C8S—C9S118.5 (4)
N3—C3—H3116.2C7S—C8S—H8S120.7
N2—C3—H3116.2C9S—C8S—H8S120.7
N2—C2—C4120.0 (3)C10S—C9S—C8S118.6 (4)
N2—C2—C7120.9 (3)C10S—C9S—H9S120.7
C4—C2—C7119.1 (3)C8S—C9S—H9S120.7
C1—C7—C2120.1 (3)N2S—C10S—C9S124.1 (3)
C1—C7—S1120.3 (2)N2S—C10S—H10S118.0
C2—C7—S1119.6 (2)C9S—C10S—H10S118.0
C5—C1—C7121.2 (3)C11S—N3S—C15S116.9 (3)
C5—C1—H1119.4N3S—C11S—C12S123.5 (4)
C7—C1—H1119.4N3S—C11S—H11S118.2
C1—C5—C6117.7 (3)C12S—C11S—H11S118.2
C1—C5—S2118.0 (2)C13S—C12S—C11S118.4 (4)
C6—C5—S2124.2 (2)C13S—C12S—H12S120.8
C4—C6—C5121.7 (3)C11S—C12S—H12S120.8
C4—C6—Cl1117.8 (2)C14S—C13S—C12S118.9 (3)
C5—C6—Cl1120.5 (2)C14S—C13S—H13S120.6
C6—C4—C2120.1 (3)C12S—C13S—H13S120.6
C6—C4—H4119.9C13S—C14S—C15S118.7 (3)
C2—C4—H4119.9C13S—C14S—H14S120.6
C5S—N1S—C1S116.3 (3)C15S—C14S—H14S120.6
N1S—C1S—C2S124.0 (3)N3S—C15S—C14S123.4 (3)
N1S—C1S—H1S118.0N3S—C15S—H15S118.3
C2S—C1S—H1S118.0C14S—C15S—H15S118.3
O3—S1—N3—C3104.1 (3)C1—C5—C6—C4−1.1 (4)
O1—S1—N3—C3−128.4 (3)S2—C5—C6—C4176.0 (2)
C7—S1—N3—C3−11.5 (3)C1—C5—C6—Cl1178.9 (2)
S1—N3—C3—N25.9 (5)S2—C5—C6—Cl1−4.1 (4)
C2—N2—C3—N33.1 (5)C5—C6—C4—C20.9 (5)
C3—N2—C2—C4175.3 (3)Cl1—C6—C4—C2−179.0 (2)
C3—N2—C2—C7−3.5 (5)N2—C2—C4—C6−178.8 (3)
N2—C2—C7—C1177.9 (3)C7—C2—C4—C60.0 (4)
C4—C2—C7—C1−0.9 (4)C5S—N1S—C1S—C2S0.4 (5)
N2—C2—C7—S1−4.4 (4)N1S—C1S—C2S—C3S−0.7 (5)
C4—C2—C7—S1176.8 (2)C1S—C2S—C3S—C4S1.2 (5)
O3—S1—C7—C172.7 (3)C2S—C3S—C4S—C5S−1.4 (5)
O1—S1—C7—C1−54.9 (3)C1S—N1S—C5S—C4S−0.6 (5)
N3—S1—C7—C1−171.6 (2)C3S—C4S—C5S—N1S1.1 (5)
O3—S1—C7—C2−105.0 (3)C10S—N2S—C6S—C7S−1.1 (5)
O1—S1—C7—C2127.4 (3)N2S—C6S—C7S—C8S1.3 (6)
N3—S1—C7—C210.7 (3)C6S—C7S—C8S—C9S−0.4 (6)
C2—C7—C1—C50.8 (4)C7S—C8S—C9S—C10S−0.6 (5)
S1—C7—C1—C5−176.9 (2)C6S—N2S—C10S—C9S0.0 (5)
C7—C1—C5—C60.2 (4)C8S—C9S—C10S—N2S0.8 (6)
C7—C1—C5—S2−177.0 (2)C15S—N3S—C11S—C12S−0.5 (6)
O4—S2—C5—C1117.4 (2)N3S—C11S—C12S—C13S−0.4 (6)
O2—S2—C5—C1−9.8 (3)C11S—C12S—C13S—C14S0.8 (6)
N1—S2—C5—C1−125.7 (3)C12S—C13S—C14S—C15S−0.4 (6)
O4—S2—C5—C6−59.7 (3)C11S—N3S—C15S—C14S0.9 (5)
O2—S2—C5—C6173.2 (3)C13S—C14S—C15S—N3S−0.5 (6)
N1—S2—C5—C657.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···N2S0.91 (4)1.86 (4)2.774 (4)177 (4)
N1—H5···N1Si0.85 (4)2.07 (4)2.900 (4)165 (4)
N1—H6···N3S0.83 (3)2.13 (4)2.946 (4)170 (3)

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2144).

References

  • Dupont, L. & Dideberg, O. (1970). Acta Cryst. B26, 1884–1885.
  • Fabbiani, F. P. A., Leech, C. K., Shankland, K., Johnston, A., Fernandes, P., Florence, A. J. & Shankland, N. (2007). Acta Cryst. C63, o659–o663. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fernandes, P., Florence, A. J., Shankland, K., Shankland, N. & Johnston, A. (2006). Acta Cryst. E62, o2216–o2218.
  • Fernandes, P., Johnston, A., Leech, C. K., Shankland, K., David, W. I. F. & Florence, A. J. (2007). Acta Cryst. E63, o3956.
  • Fernandes, P., Leech, C. K., Johnston, A., Shankland, K., David, W. I. F., Shankland, N. & Florence, A. J. (2007). Acta Cryst. E63, o3685. [PubMed]
  • Fernandes, P., Shankland, K., Florence, A. J., Shankland, N. & Johnston, A. (2007). J. Pharm. Sci.96, 1192–1202. [PubMed]
  • Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci.92, 1930–1938. [PubMed]
  • Florence, A. J., Johnston, A., Fernandes, P., Shankland, N. & Shankland, K. (2006). J. Appl. Cryst.39, 922–924.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Johnston, A., Florence, A. J., Fernandes, P. & Kennedy, A. R. (2007a). Acta Cryst. E63, o2422.
  • Johnston, A., Florence, A. J., Fernandes, P. & Kennedy, A. R. (2007b). Acta Cryst. E63, o2423.
  • Johnston, A., Florence, A. J. & Kennedy, A. R. (2007). Acta Cryst. E63, o4021.
  • Johnston, A., Florence, A. J., Shankland, N., Kennedy, A. R., Shankland, K. & Price, S. L. (2007). Cryst. Growth Des.7, 705–712.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp 307–326. New York: Academic Press.
  • Shankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem.7, 569–572.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography