PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m763.
Published online 2008 May 3. doi:  10.1107/S1600536808007861
PMCID: PMC2961451

Bis­(N,N′-diphenyl­thio­urea)iodido­copper(I) monohydrate

Abstract

In the title compound, [CuI(C13H12N2S)2]·H2O, each Cu(I) ion is coordinated by two S atoms [Cu—S 2.2282 (16), 2.2377 (15) Å] from two N,N′-diphenyl­thio­urea ligands and one iodide ion [Cu—I 2.5170 (11) Å] in a trigonal planar geometry. The uncoordinated water mol­ecules are involved in N—H(...)O hydrogen-bonding [N(...)O 2.947 (5), 3.055 (5) Å], which link the mol­ecules into chains extended in the [101] direction. These chains are further paired by weak inter­molecular O—H(...)S hydrogen bonds [O(...)S 3.490 (4) Å].

Related literature

For geometrical parameters in related crystal structures, see: Lobana et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m763-scheme1.jpg

Experimental

Crystal data

  • [CuI(C13H12N2S)2]·H2O
  • M r = 665.07
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m763-efi1.jpg
  • a = 9.700 (4) Å
  • b = 12.490 (5) Å
  • c = 12.935 (5) Å
  • α = 91.489 (5)°
  • β = 108.110 (5)°
  • γ = 110.950 (5)°
  • V = 1374.4 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.10 mm−1
  • T = 298 (2) K
  • 0.28 × 0.19 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.592, T max = 0.704
  • 7290 measured reflections
  • 4804 independent reflections
  • 2999 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.085
  • S = 0.87
  • 4804 reflections
  • 316 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808007861/cv2394sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808007861/cv2394Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Natural Science Foundation of Liaocheng University (X051002) for support.

supplementary crystallographic information

Comment

In this paper, we report the synthesis and the crystal structure of the title compound (I).

In (I) (Fig. 1), the Cu(I) ion is in a trigonal coordination environment formed by to two S atoms of two monodentate diphenylthiourea ligands and one iodine ion. The Cu-S [2.2282 (16), 2.2377 (15) Å] and Cu-I [2.5170 (11) Å] bond lengths agree well with those reported for the related compounds (Lobana et al., 2006).

The crystalline water molecules are involved in N—H···O hydrogen-bonding (Table 1), which link the molecules into chains extended in direction [101]. These chains are further paired (Fig. 2) by the weak intermolecular O—H···S hydrogen bonds (Table 1).

Experimental

CuI (0.19 g 1 mmol) and diphenylthiourea (0.46 g 2 mmol) in 10 ml acetonitrile,refluxed for 24 h, then a colourless solution formed. After filtration, the solution was allowed to evaporate slowly. Crystals suitable for X-ray diffraction were obtained after several days.

Refinement

All H atoms were placed in calculated positions (O-H 0.85 Å, N-H 0.86 Å, C-H 0.93 Å), and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq of the parent atoms.

Figures

Fig. 1.
The molecular structure of (I), showing the atomic numbering and 40% probability displacement ellipsoids. H atoms omitted for clarity.
Fig. 2.
A portion of the crystal packing showing the paired hydrogen-bonded (dashed lines) chains. H atoms not involved in hydrogen-bonding are omitted for clarity.

Crystal data

[CuI(C13H12N2S)2]·H2OZ = 2
Mr = 665.07F000 = 664
Triclinic, P1Dx = 1.607 Mg m3
a = 9.700 (4) ÅMo Kα radiation λ = 0.71073 Å
b = 12.490 (5) ÅCell parameters from 1949 reflections
c = 12.935 (5) Åθ = 2.4–22.1º
α = 91.489 (5)ºµ = 2.10 mm1
β = 108.110 (5)ºT = 298 (2) K
γ = 110.950 (5)ºBlock, colourless
V = 1374.4 (9) Å30.28 × 0.19 × 0.18 mm

Data collection

Bruker SMART CCD area-detector diffractometer4804 independent reflections
Radiation source: fine-focus sealed tube2999 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
T = 298(2) Kθmax = 25.0º
phi and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.592, Tmax = 0.704k = −14→14
7290 measured reflectionsl = −15→9

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.085  w = 1/[σ2(Fo2) + (0.0329P)2] where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max < 0.001
4804 reflectionsΔρmax = 0.58 e Å3
316 parametersΔρmin = −0.45 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.05943 (7)0.11385 (5)0.77393 (5)0.04630 (19)
I10.17712 (4)0.33136 (3)0.82406 (3)0.05399 (14)
N1−0.0381 (4)0.2061 (3)0.5295 (3)0.0443 (11)
H10.02730.23490.59520.053*
N2−0.2538 (4)0.0540 (3)0.4163 (3)0.0436 (11)
H2−0.25710.09870.36690.052*
N30.2680 (4)0.1602 (3)1.0425 (3)0.0405 (10)
H30.23220.19660.99210.049*
N40.3157 (4)−0.0053 (3)1.0771 (3)0.0406 (10)
H40.38450.03501.13850.049*
O10.6610 (4)0.1414 (3)0.2058 (3)0.0619 (11)
H1A0.68400.21050.19200.074*
H1B0.71590.11070.18580.074*
S1−0.12503 (15)0.01325 (10)0.61534 (11)0.0466 (4)
S20.11547 (15)−0.01538 (10)0.87828 (11)0.0474 (4)
C1−0.1409 (5)0.0964 (4)0.5129 (4)0.0347 (12)
C2−0.0288 (6)0.2790 (4)0.4464 (4)0.0423 (13)
C3−0.1082 (7)0.3512 (4)0.4296 (5)0.0613 (16)
H3A−0.17060.35260.47110.074*
C4−0.0948 (8)0.4228 (5)0.3497 (5)0.073 (2)
H4A−0.14780.47290.33840.088*
C5−0.0044 (7)0.4203 (5)0.2876 (5)0.0701 (19)
H50.00430.46870.23450.084*
C60.0738 (8)0.3459 (6)0.3040 (6)0.085 (2)
H60.13420.34240.26150.102*
C70.0606 (6)0.2770 (5)0.3844 (5)0.0645 (17)
H70.11450.22750.39660.077*
C8−0.3704 (5)−0.0610 (4)0.3884 (4)0.0379 (12)
C9−0.5254 (6)−0.0777 (4)0.3680 (4)0.0470 (14)
H9−0.5529−0.01420.37290.056*
C10−0.6383 (6)−0.1869 (5)0.3406 (5)0.0624 (17)
H10−0.7425−0.19770.32780.075*
C11−0.5994 (7)−0.2808 (5)0.3318 (5)0.0687 (18)
H11−0.6772−0.35530.31240.082*
C12−0.4450 (8)−0.2653 (5)0.3517 (5)0.0665 (18)
H12−0.4180−0.32900.34650.080*
C13−0.3309 (6)−0.1546 (4)0.3791 (5)0.0512 (14)
H13−0.2267−0.14350.39140.061*
C140.2398 (5)0.0499 (4)1.0080 (4)0.0342 (12)
C150.3482 (5)0.2268 (4)1.1501 (5)0.0412 (13)
C160.4300 (7)0.3453 (4)1.1573 (5)0.0581 (16)
H160.43540.37781.09410.070*
C170.5030 (8)0.4140 (5)1.2591 (6)0.081 (2)
H170.55680.49351.26460.097*
C180.4967 (7)0.3661 (5)1.3517 (6)0.0724 (19)
H180.54690.41311.42010.087*
C190.4175 (6)0.2495 (5)1.3452 (5)0.0553 (15)
H190.41510.21731.40900.066*
C200.3410 (6)0.1801 (4)1.2436 (4)0.0444 (13)
H200.28440.10121.23880.053*
C210.2935 (6)−0.1242 (4)1.0585 (4)0.0371 (12)
C220.4230 (6)−0.1510 (4)1.0756 (4)0.0492 (14)
H220.5229−0.09271.09740.059*
C230.4029 (7)−0.2666 (5)1.0598 (5)0.0631 (17)
H230.4903−0.28561.07110.076*
C240.2569 (8)−0.3529 (5)1.0281 (5)0.0699 (18)
H240.2448−0.43001.01700.084*
C250.1277 (7)−0.3252 (5)1.0125 (5)0.0673 (18)
H250.0279−0.38380.99100.081*
C260.1456 (6)−0.2107 (4)1.0286 (5)0.0498 (14)
H260.0583−0.19201.01930.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0492 (4)0.0489 (4)0.0387 (4)0.0194 (3)0.0111 (3)0.0147 (3)
I10.0693 (3)0.0439 (2)0.0507 (3)0.02398 (19)0.0197 (2)0.01702 (19)
N10.044 (2)0.041 (2)0.033 (3)0.010 (2)0.001 (2)0.011 (2)
N20.043 (2)0.040 (2)0.039 (3)0.013 (2)0.005 (2)0.013 (2)
N30.053 (3)0.037 (2)0.030 (3)0.019 (2)0.008 (2)0.010 (2)
N40.048 (2)0.035 (2)0.028 (2)0.015 (2)0.001 (2)0.001 (2)
O10.065 (2)0.056 (2)0.050 (3)0.017 (2)0.008 (2)0.010 (2)
S10.0489 (8)0.0414 (8)0.0394 (8)0.0117 (6)0.0077 (7)0.0152 (7)
S20.0557 (8)0.0400 (7)0.0360 (8)0.0166 (7)0.0037 (7)0.0076 (7)
C10.037 (3)0.035 (3)0.033 (3)0.015 (2)0.012 (3)0.008 (2)
C20.046 (3)0.037 (3)0.041 (3)0.015 (3)0.011 (3)0.014 (3)
C30.080 (4)0.057 (4)0.058 (4)0.036 (3)0.028 (4)0.014 (3)
C40.112 (5)0.057 (4)0.066 (5)0.052 (4)0.025 (4)0.032 (4)
C50.092 (5)0.050 (4)0.058 (4)0.018 (3)0.021 (4)0.029 (3)
C60.103 (5)0.104 (5)0.086 (6)0.054 (5)0.062 (5)0.057 (5)
C70.074 (4)0.077 (4)0.070 (5)0.046 (4)0.039 (4)0.044 (4)
C80.039 (3)0.041 (3)0.029 (3)0.009 (2)0.012 (3)0.006 (2)
C90.042 (3)0.056 (3)0.041 (4)0.020 (3)0.011 (3)0.007 (3)
C100.041 (3)0.071 (4)0.062 (4)0.007 (3)0.020 (3)−0.006 (4)
C110.064 (4)0.057 (4)0.059 (4)−0.005 (3)0.020 (4)−0.007 (3)
C120.086 (5)0.044 (4)0.070 (5)0.026 (4)0.028 (4)−0.003 (3)
C130.052 (3)0.052 (4)0.052 (4)0.020 (3)0.022 (3)0.001 (3)
C140.034 (3)0.032 (3)0.032 (3)0.007 (2)0.012 (2)0.004 (2)
C150.043 (3)0.035 (3)0.047 (4)0.015 (2)0.018 (3)0.006 (3)
C160.082 (4)0.040 (3)0.055 (4)0.013 (3)0.039 (4)0.009 (3)
C170.097 (5)0.039 (3)0.090 (6)−0.008 (3)0.050 (5)−0.015 (4)
C180.084 (5)0.057 (4)0.061 (5)0.006 (4)0.031 (4)−0.017 (4)
C190.057 (4)0.058 (4)0.043 (4)0.015 (3)0.016 (3)0.000 (3)
C200.047 (3)0.039 (3)0.045 (4)0.011 (3)0.018 (3)0.006 (3)
C210.050 (3)0.037 (3)0.026 (3)0.018 (3)0.013 (3)0.012 (2)
C220.049 (3)0.057 (4)0.045 (4)0.023 (3)0.017 (3)0.014 (3)
C230.081 (5)0.070 (4)0.065 (5)0.046 (4)0.039 (4)0.022 (4)
C240.098 (5)0.045 (4)0.069 (5)0.038 (4)0.019 (4)0.007 (3)
C250.064 (4)0.043 (4)0.077 (5)0.009 (3)0.013 (4)0.017 (3)
C260.050 (3)0.046 (3)0.058 (4)0.022 (3)0.019 (3)0.016 (3)

Geometric parameters (Å, °)

Cu1—S12.2282 (16)C9—C101.360 (7)
Cu1—S22.2377 (15)C9—H90.9300
Cu1—I12.5170 (11)C10—C111.367 (7)
N1—C11.338 (5)C10—H100.9300
N1—C21.431 (6)C11—C121.377 (7)
N1—H10.8600C11—H110.9300
N2—C11.320 (6)C12—C131.378 (7)
N2—C81.425 (5)C12—H120.9300
N2—H20.8600C13—H130.9300
N3—C141.340 (5)C15—C201.367 (7)
N3—C151.427 (6)C15—C161.392 (7)
N3—H30.8600C16—C171.378 (8)
N4—C141.343 (5)C16—H160.9300
N4—C211.424 (5)C17—C181.362 (8)
N4—H40.8600C17—H170.9300
O1—H1A0.8500C18—C191.367 (7)
O1—H1B0.8500C18—H180.9300
S1—C11.708 (5)C19—C201.380 (7)
S2—C141.703 (5)C19—H190.9300
C2—C71.358 (7)C20—H200.9300
C2—C31.363 (6)C21—C221.368 (6)
C3—C41.389 (7)C21—C261.379 (6)
C3—H3A0.9300C22—C231.386 (7)
C4—C51.368 (8)C22—H220.9300
C4—H4A0.9300C23—C241.364 (7)
C5—C61.377 (8)C23—H230.9300
C5—H50.9300C24—C251.373 (7)
C6—C71.375 (7)C24—H240.9300
C6—H60.9300C25—C261.379 (7)
C7—H70.9300C25—H250.9300
C8—C131.367 (6)C26—H260.9300
C8—C91.378 (6)
S1—Cu1—S2106.87 (6)C10—C11—C12120.0 (5)
S1—Cu1—I1125.81 (4)C10—C11—H11120.0
S2—Cu1—I1127.32 (5)C12—C11—H11120.0
C1—N1—C2125.0 (4)C11—C12—C13119.5 (5)
C1—N1—H1117.5C11—C12—H12120.2
C2—N1—H1117.5C13—C12—H12120.2
C1—N2—C8124.3 (4)C8—C13—C12120.2 (5)
C1—N2—H2117.8C8—C13—H13119.9
C8—N2—H2117.8C12—C13—H13119.9
C14—N3—C15130.0 (4)N3—C14—N4118.1 (4)
C14—N3—H3115.0N3—C14—S2120.2 (4)
C15—N3—H3115.0N4—C14—S2121.6 (3)
C14—N4—C21126.3 (4)C20—C15—C16119.8 (5)
C14—N4—H4116.8C20—C15—N3122.9 (4)
C21—N4—H4116.8C16—C15—N3117.3 (5)
H1A—O1—H1B110.0C17—C16—C15119.3 (6)
C1—S1—Cu1112.56 (17)C17—C16—H16120.3
C14—S2—Cu1111.44 (16)C15—C16—H16120.3
N2—C1—N1118.9 (4)C18—C17—C16120.2 (5)
N2—C1—S1120.9 (4)C18—C17—H17119.9
N1—C1—S1120.3 (4)C16—C17—H17119.9
C7—C2—C3119.7 (5)C17—C18—C19120.7 (6)
C7—C2—N1119.9 (4)C17—C18—H18119.6
C3—C2—N1120.4 (5)C19—C18—H18119.6
C2—C3—C4119.3 (6)C18—C19—C20119.6 (6)
C2—C3—H3A120.4C18—C19—H19120.2
C4—C3—H3A120.4C20—C19—H19120.2
C5—C4—C3120.7 (5)C15—C20—C19120.3 (5)
C5—C4—H4A119.7C15—C20—H20119.9
C3—C4—H4A119.7C19—C20—H20119.9
C4—C5—C6119.8 (6)C22—C21—C26120.6 (5)
C4—C5—H5120.1C22—C21—N4118.5 (4)
C6—C5—H5120.1C26—C21—N4120.9 (4)
C7—C6—C5118.7 (6)C21—C22—C23119.0 (5)
C7—C6—H6120.7C21—C22—H22120.5
C5—C6—H6120.7C23—C22—H22120.5
C2—C7—C6121.9 (5)C24—C23—C22120.9 (5)
C2—C7—H7119.0C24—C23—H23119.5
C6—C7—H7119.0C22—C23—H23119.5
C13—C8—C9119.7 (5)C23—C24—C25119.7 (5)
C13—C8—N2120.8 (4)C23—C24—H24120.2
C9—C8—N2119.5 (4)C25—C24—H24120.2
C10—C9—C8120.2 (5)C24—C25—C26120.1 (5)
C10—C9—H9119.9C24—C25—H25119.9
C8—C9—H9119.9C26—C25—H25119.9
C9—C10—C11120.4 (5)C21—C26—C25119.6 (5)
C9—C10—H10119.8C21—C26—H26120.2
C11—C10—H10119.8C25—C26—H26120.2

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···I10.862.873.706 (4)166
N2—H2···O1i0.862.142.947 (5)156
N3—H3···I10.862.823.666 (4)168
N4—H4···O1ii0.862.383.055 (5)136
O1—H1B···S2iii0.852.643.490 (4)179

Symmetry codes: (i) x−1, y, z; (ii) x, y, z+1; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2394).

References

  • Lobana, T. S., Khanna, S., Butcher, R. J., Hunter, A. D. & Zeller, M. (2006). Polyhedron, 25, 2755–2763.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography