PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1113.
Published online 2008 May 17. doi:  10.1107/S1600536808014475
PMCID: PMC2961450

(E)-2-Hydr­oxy-3-methoxy­benzaldehyde thio­semicarbazone

Abstract

In the title compound, C9H11N3O2S, intra­molecular O—H(...)O and N—H(...)N hydrogen bonds contribute to the planarity of the mol­ecular skeleton. Inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into zigzag chains along the b axis; these mol­ecules are futher paired by π–π inter­actions [centroid–centroid distance 4.495 (5) Å]. The crystal structure also exhibits weak inter­molecular N—H(...)S and O—H(...)S hydrogen bonds.

Related literature

For related crystal structures, see: Joseph et al. (2006 [triangle]). For biological activities of thio­semicarbazone Schiff bases, see: Kasuga et al. (2001 [triangle]); Fonari et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1113-scheme1.jpg

Experimental

Crystal data

  • C9H11N3O2S
  • M r = 225.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1113-efi1.jpg
  • a = 7.057 (3) Å
  • b = 14.673 (5) Å
  • c = 10.738 (4) Å
  • β = 108.412 (7)°
  • V = 1055.0 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 273 (2) K
  • 0.15 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.958, T max = 0.972
  • 5510 measured reflections
  • 1872 independent reflections
  • 1023 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.163
  • S = 1.10
  • 1872 reflections
  • 138 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014475/cv2411sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014475/cv2411Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Postgraduate Foundation of Taishan University for financial support (grant No. Y06–2-12).

supplementary crystallographic information

Comment

Thiosemicarbazone Schiff-bases have been investigated in terms of their chemistry and potentially beneficial biological activities, such as antitumor, antibacterial, antiviral and antimalarial activities (Kasuga et al., 2001; Fonari et al., 2003). In continuation of our studies on thiosemicarbazone Schiff-bases, we report the synthesis and crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and in a good agreement with those found in the literature (Joseph et al., 2006). The intramolecular O—H···O and N—H···N hydrogen bonds (Table 2) contribute to the planarity of molecular skeleton. The intermolecular N—H···O hydrogen bonds (Table 2) link the molecules into zigzag chains along b axis, which are futher paired by π···π interactions proved by short intermolecular C···C distances (Table 1). The crystal packing exhibits also weak intermolecular N—H···S and O—H···S hydrogen bonds (Table 2).

Experimental

The title compound was synthesized by the reaction of 2-hydroxy-3-methoxybenzaldehyde (0.152 g, 1 mmol) and hydrazinecarbothioamide (0.091 g, 1 mmol) in ethanol solution and stirred under reflux conditions (353 K) for 6 h. When cooled to the room temperature, the solution was filtered off and after a week orange crystals suitable for X-ray diffraction study were obtained. Yield, 0.199 g, 82%. m.p. 358–360 K.

Analysis found: C 47.94, H 4.95, N 18.62%; C9H11N3O2S requires: C 47.99, H 4.92, N 18.65%.

Refinement

The H-atoms were geometrically positioned (C-H 0.93-0.96 Å, N-H 0.86 Å, O-H 0.82 Å), and refined as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C-aromatic and N) and Uiso(H) = 1.5Ueq(C-methyl and O).

Figures

Fig. 1.
The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.

Crystal data

C9H11N3O2SF(000) = 472
Mr = 225.27Dx = 1.418 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 511 reflections
a = 7.057 (3) Åθ = 2.4–19.8°
b = 14.673 (5) ŵ = 0.29 mm1
c = 10.738 (4) ÅT = 273 K
β = 108.412 (7)°Block, orange
V = 1055.0 (7) Å30.15 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer1872 independent reflections
Radiation source: fine-focus sealed tube1023 reflections with I > 2σ(I)
graphiteRint = 0.071
[var phi] and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→6
Tmin = 0.958, Tmax = 0.972k = −17→17
5510 measured reflectionsl = −9→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.163w = 1/[σ2(Fo2) + (0.0641P)2 + 0.0089P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1872 reflectionsΔρmax = 0.19 e Å3
138 parametersΔρmin = −0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.005 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.0171 (2)0.35387 (8)0.55909 (10)0.0534 (5)
O10.8111 (5)0.65121 (18)−0.0190 (3)0.0600 (10)
H10.79150.6940−0.07060.090*
O20.6495 (5)0.6610 (2)−0.2733 (3)0.0637 (10)
N10.8421 (5)0.4185 (2)0.1879 (3)0.0423 (10)
N20.9111 (5)0.4247 (2)0.3218 (3)0.0464 (10)
H20.93510.47710.35950.056*
N30.9079 (6)0.2710 (2)0.3278 (3)0.0583 (12)
H3A0.86920.27160.24340.070*
H3B0.92480.21990.36920.070*
C10.9411 (7)0.3481 (3)0.3936 (4)0.0425 (11)
C20.8215 (7)0.4935 (3)0.1257 (4)0.0442 (12)
H2A0.85800.54800.17120.053*
C30.7403 (6)0.4938 (3)−0.0173 (4)0.0383 (11)
C40.7340 (7)0.5738 (3)−0.0851 (4)0.0410 (11)
C50.6465 (7)0.5770 (3)−0.2212 (4)0.0443 (12)
C60.5703 (8)0.4995 (3)−0.2877 (4)0.0556 (14)
H60.51230.5011−0.37840.067*
C70.5789 (8)0.4183 (3)−0.2207 (4)0.0625 (15)
H70.52750.3655−0.26690.075*
C80.6621 (7)0.4148 (3)−0.0874 (4)0.0552 (14)
H80.66670.3599−0.04340.066*
C90.5673 (8)0.6720 (3)−0.4120 (4)0.0628 (15)
H9A0.63350.6316−0.45510.094*
H9B0.58590.7339−0.43510.094*
H9C0.42720.6582−0.43920.094*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0790 (10)0.0454 (7)0.0340 (6)0.0035 (7)0.0154 (6)0.0006 (5)
O10.100 (3)0.0310 (16)0.0406 (17)−0.0114 (18)0.0107 (17)−0.0004 (14)
O20.092 (3)0.054 (2)0.0415 (19)−0.0039 (19)0.0147 (17)0.0101 (15)
N10.055 (3)0.041 (2)0.0303 (19)0.0000 (18)0.0133 (17)−0.0019 (16)
N20.068 (3)0.038 (2)0.032 (2)0.000 (2)0.0133 (18)−0.0004 (16)
N30.098 (4)0.039 (2)0.032 (2)−0.001 (2)0.012 (2)0.0005 (16)
C10.053 (3)0.037 (2)0.036 (2)0.003 (2)0.012 (2)0.005 (2)
C20.056 (4)0.035 (2)0.042 (2)0.000 (2)0.016 (2)0.0029 (19)
C30.046 (3)0.036 (3)0.032 (2)0.004 (2)0.011 (2)0.0028 (18)
C40.043 (3)0.038 (3)0.040 (2)0.003 (2)0.012 (2)−0.001 (2)
C50.056 (3)0.042 (3)0.035 (2)0.001 (2)0.014 (2)0.008 (2)
C60.069 (4)0.061 (3)0.033 (3)−0.004 (3)0.010 (2)−0.006 (2)
C70.087 (4)0.045 (3)0.049 (3)−0.006 (3)0.013 (3)−0.011 (2)
C80.074 (4)0.043 (3)0.045 (3)−0.003 (3)0.013 (2)−0.001 (2)
C90.063 (4)0.074 (3)0.047 (3)0.004 (3)0.011 (2)0.017 (2)

Geometric parameters (Å, °)

S1—C11.688 (4)C2—H2A0.9300
O1—C41.358 (4)C3—C41.375 (5)
O1—H10.8200C3—C81.396 (5)
O2—C51.357 (5)C4—C51.397 (5)
O2—C91.426 (5)C5—C61.360 (6)
N1—C21.271 (5)C6—C71.382 (6)
N1—N21.367 (4)C6—H60.9300
N2—C11.342 (5)C7—C81.365 (6)
N2—H20.8600C7—H70.9300
N3—C11.315 (5)C8—H80.9300
N3—H3A0.8600C9—H9A0.9600
N3—H3B0.8600C9—H9B0.9600
C2—C31.460 (5)C9—H9C0.9600
C1···C9i3.425 (7)C2···C4i3.445 (7)
C4—O1—H1109.5C3—C4—C5120.8 (4)
C5—O2—C9118.7 (3)O2—C5—C6126.7 (4)
C2—N1—N2116.0 (3)O2—C5—C4113.7 (4)
C1—N2—N1119.2 (3)C6—C5—C4119.5 (4)
C1—N2—H2120.4C5—C6—C7120.1 (4)
N1—N2—H2120.4C5—C6—H6119.9
C1—N3—H3A120.0C7—C6—H6119.9
C1—N3—H3B120.0C8—C7—C6120.8 (4)
H3A—N3—H3B120.0C8—C7—H7119.6
N3—C1—N2116.3 (4)C6—C7—H7119.6
N3—C1—S1123.5 (3)C7—C8—C3120.0 (4)
N2—C1—S1120.2 (3)C7—C8—H8120.0
N1—C2—C3119.8 (4)C3—C8—H8120.0
N1—C2—H2A120.1O2—C9—H9A109.5
C3—C2—H2A120.1O2—C9—H9B109.5
C4—C3—C8118.8 (4)H9A—C9—H9B109.5
C4—C3—C2119.7 (4)O2—C9—H9C109.5
C8—C3—C2121.4 (4)H9A—C9—H9C109.5
O1—C4—C3119.8 (4)H9B—C9—H9C109.5
O1—C4—C5119.4 (4)
C2—N1—N2—C1−178.4 (4)C9—O2—C5—C4178.9 (4)
N1—N2—C1—N32.5 (6)O1—C4—C5—O20.0 (7)
N1—N2—C1—S1−177.5 (3)C3—C4—C5—O2179.1 (4)
N2—N1—C2—C3−177.3 (4)O1—C4—C5—C6179.6 (4)
N1—C2—C3—C4−174.4 (4)C3—C4—C5—C6−1.3 (7)
N1—C2—C3—C87.7 (7)O2—C5—C6—C7179.7 (5)
C8—C3—C4—O1−179.3 (4)C4—C5—C6—C70.2 (8)
C2—C3—C4—O12.8 (7)C5—C6—C7—C80.5 (9)
C8—C3—C4—C51.7 (7)C6—C7—C8—C3−0.2 (8)
C2—C3—C4—C5−176.3 (4)C4—C3—C8—C7−0.9 (7)
C9—O2—C5—C6−0.6 (7)C2—C3—C8—C7177.0 (5)

Symmetry codes: (i) −x+2, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O20.822.142.610 (4)116.
N3—H3A···N10.862.232.592 (5)105.
O1—H1···S1ii0.822.693.290 (3)131.
N2—H2···S1iii0.862.623.470 (4)172.
N3—H3B···O1iv0.862.282.943 (4)134.

Symmetry codes: (ii) −x+2, y+1/2, −z+1/2; (iii) −x+2, −y+1, −z+1; (iv) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2411).

References

  • Fonari, M. S., Simonov, Y. A., Kravtsov, V. C., Lipkowski, J., Ganin, E. V. & Yavolovskii, A. A. (2003). J. Mol. Struct.647, 129–140.
  • Joseph, M., Kuriakose, M., Kurup, M. R. P., Suresh, E., Kishore, A. & Bhat, S. G. (2006). Polyhedron, 25, 61–70.
  • Kasuga, N. C., Sekino, K., Koumo, C., Shimada, N., Ishikawa, M. & Nomiya, K. (2001). J. Inorg. Biochem.84, 55–65. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography