PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1075.
Published online 2008 May 14. doi:  10.1107/S1600536808013937
PMCID: PMC2961443

9-Ethyl-3,6-bis­(1H-imidazol-1-yl)-9H-carbazole

Abstract

In the crystal structure of the title compound, C20H17N5, the two imidazole rings are twisted with respect to the carbazole plane, making dihedral angles of 55.8 (2) and 43.7 (2)°. The crystal structure is stabilized by weak C—H(...)N and C—H(...)π inter­actions.

Related literature

For general background, see: Mi et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1075-scheme1.jpg

Experimental

Crystal data

  • C20H17N5
  • M r = 327.39
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1075-efi1.jpg
  • a = 5.625 (2) Å
  • b = 8.826 (3) Å
  • c = 17.367 (6) Å
  • α = 92.698 (6)°
  • β = 96.011 (6)°
  • γ = 102.567 (6)°
  • V = 834.8 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.46 × 0.40 × 0.16 mm

Data collection

  • Bruker SMART APEX area-dectector diffractometer
  • Absorption correction: none
  • 6040 measured reflections
  • 2928 independent reflections
  • 2611 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.120
  • S = 1.06
  • 2928 reflections
  • 225 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013937/xu2412sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013937/xu2412Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (50532030, 50703001 and 20771001), the Natural Science Foundation of Anhui Province, China (070414188), the Doctoral Program Foundation of the Ministry of Education of China, the Education Committee of Anhui Province, China (2006K J032A), the Team for Scientific Innovation Foundation of Anhui Province (2006K J007TD), the Young Teacher Foundation of Institutions of Higher Education of Anhui Province (2007jq1019), the Ministry of Education and the Persons with Ability Foundation of Anhui University, China.

supplementary crystallographic information

Comment

Carbazole derivatives exhibit good charge transfer and hole transporting properties, which are being explored for a multitude of optoelectronic and photocatalytic applications, including organic light emitting diodes (OLEDs) (Mi et al., 2003). The title molecule containing imidazole with electrochemical and biology properties has been prepared, its crystal structure is reported here.

The molecular structure is shown in Fig. 1, the bond lengths and angles are normal. The dihedral angles between N2-imidazole and C4-benzene rings and between N4-imidazole and C10-benzene rings are 55.8 (2) and 43.7 (2)°, respectively. In the crystal structure, the molecules are stacked through the weak C19—H19A···Cgi interactions (Cg is the centroid of the N1-imidazole ring), H19A···Cgi = 2.85 Å, C19···Cgi = 3.640 (11) Å and C19—H19A···Cgi = 139° [symmetry code: (i) -1 + x, -1 + y, z]. The weak C—H···N hydrogen bonding (Table 1) helps to stabilize the crystal structure.

Experimental

For the preparation of 3,6-diimidazolyl-9-ethylcarbazole, a mixture of CuI (0.27 g, 1.40 mmol) and 1,10-phenanthroline (0.60 g, 3.00 mmol) were heated at 393 K with DMF (3 ml) as solvent for 10 min. Then, the mixture was cooled to room temperature, potassium tert-butanol (6.05 g, 54.00 mmol), imidazole (3.65 g, 54.00 mmol), 3,6-diiodo-9-ethylcarbazole (3.00 g, 6.70 mmol) and 18-crown-6 (litter) were added and heated at 413 k for 48 h, then the reaction mixture was heated to 433 k for 12 h, and cooled to room temperature. The mixture solution was poured into water and extracted by dichloromethane. The organic layer was separated, dried with anhydrous magnesium sulfate. Then it was filtered and concentrated, the re-crystallization from ethyl acetate produced light yellow single crystals (1.50 g, Yield 70.0%).

Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 - 0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound showing 50% probability displacement ellipsoids.

Crystal data

C20H17N5Z = 2
Mr = 327.39F000 = 344
Triclinic, P1Dx = 1.302 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 5.625 (2) ÅCell parameters from 2928 reflections
b = 8.826 (3) Åθ = 1.2–25.0º
c = 17.367 (6) ŵ = 0.08 mm1
α = 92.698 (6)ºT = 293 (2) K
β = 96.011 (6)ºPrism, yellow
γ = 102.567 (6)º0.46 × 0.40 × 0.16 mm
V = 834.8 (5) Å3

Data collection

Bruker SMART APEX area-dectector diffractometer2611 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Monochromator: graphiteθmax = 25.0º
T = 293(2) Kθmin = 1.2º
[var phi] and ω scansh = −6→6
Absorption correction: nonek = −10→10
6040 measured reflectionsl = −20→20
2928 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039  w = 1/[σ2(Fo2) + (0.0695P)2 + 0.1471P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.23 e Å3
2928 reflectionsΔρmin = −0.18 e Å3
225 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (6)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N20.49085 (19)0.34017 (13)0.10310 (6)0.0435 (3)
N40.89546 (19)0.72250 (13)0.53896 (6)0.0418 (3)
N50.6235 (2)0.67394 (15)0.62354 (7)0.0553 (4)
N10.1184 (2)0.19639 (15)0.06703 (7)0.0535 (3)
N31.2016 (2)0.83688 (14)0.24918 (7)0.0484 (3)
C130.9898 (2)0.75062 (15)0.46637 (7)0.0405 (3)
C50.8279 (3)0.56084 (17)0.09187 (8)0.0485 (4)
H50.80100.53960.03830.058*
C90.7148 (2)0.49327 (16)0.21905 (7)0.0432 (3)
H90.61790.42890.25000.052*
C121.1789 (2)0.88178 (16)0.46167 (8)0.0459 (4)
H121.24630.94560.50620.055*
C71.0438 (2)0.71535 (16)0.20364 (8)0.0438 (3)
C101.1590 (2)0.82136 (16)0.32594 (8)0.0433 (3)
C111.2661 (2)0.91729 (16)0.39191 (8)0.0476 (4)
H111.39331.00320.38900.057*
C80.8970 (2)0.62019 (15)0.25193 (7)0.0416 (3)
C140.8859 (2)0.65280 (15)0.40123 (7)0.0430 (3)
H140.76240.56520.40480.052*
C20.5129 (3)0.22459 (17)0.05004 (8)0.0493 (4)
H20.65690.20930.03230.059*
C180.6561 (2)0.68650 (16)0.55011 (8)0.0480 (4)
H180.52810.67220.51010.058*
C150.9703 (2)0.68841 (15)0.33029 (7)0.0416 (3)
C10.2852 (3)0.13828 (17)0.02886 (8)0.0515 (4)
H10.24600.0517−0.00650.062*
C61.0107 (3)0.68540 (17)0.12343 (8)0.0496 (4)
H61.10900.74760.09200.060*
C40.6822 (2)0.46580 (16)0.13922 (7)0.0423 (3)
C161.0248 (3)0.73427 (18)0.61152 (8)0.0503 (4)
H161.19440.75840.62350.060*
C191.3664 (3)0.96821 (17)0.22027 (9)0.0535 (4)
H19A1.38621.05910.25600.064*
H19B1.29210.99140.17050.064*
C30.2492 (2)0.31619 (17)0.11053 (8)0.0473 (4)
H30.18320.37840.14320.057*
C170.8562 (3)0.70373 (19)0.66187 (8)0.0553 (4)
H170.89290.70300.71530.066*
C201.6114 (4)0.9380 (3)0.21097 (14)0.0896 (6)
H20A1.68720.91670.26020.134*
H20B1.71201.02790.19230.134*
H20C1.59360.85010.17440.134*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N20.0408 (6)0.0507 (7)0.0374 (6)0.0095 (5)0.0013 (4)−0.0020 (5)
N40.0403 (6)0.0420 (6)0.0403 (6)0.0042 (5)0.0040 (5)−0.0012 (5)
N50.0514 (7)0.0583 (8)0.0555 (8)0.0067 (6)0.0152 (6)0.0044 (6)
N10.0427 (6)0.0611 (8)0.0533 (7)0.0076 (6)0.0006 (5)0.0001 (6)
N30.0488 (7)0.0466 (7)0.0447 (7)−0.0022 (5)0.0084 (5)0.0065 (5)
C130.0394 (7)0.0409 (7)0.0390 (7)0.0047 (5)0.0032 (5)0.0012 (5)
C50.0521 (8)0.0574 (9)0.0353 (7)0.0114 (7)0.0047 (6)0.0030 (6)
C90.0449 (7)0.0436 (7)0.0383 (7)0.0042 (6)0.0046 (5)0.0022 (5)
C120.0446 (7)0.0426 (8)0.0448 (8)0.0011 (6)0.0003 (6)−0.0031 (6)
C70.0438 (7)0.0449 (8)0.0416 (7)0.0066 (6)0.0056 (5)0.0053 (6)
C100.0418 (7)0.0415 (7)0.0441 (7)0.0032 (6)0.0052 (5)0.0050 (6)
C110.0429 (7)0.0419 (8)0.0508 (8)−0.0048 (6)0.0032 (6)0.0029 (6)
C80.0433 (7)0.0413 (7)0.0380 (7)0.0044 (6)0.0051 (5)0.0040 (5)
C140.0431 (7)0.0388 (7)0.0423 (7)−0.0003 (6)0.0040 (6)0.0016 (6)
C20.0449 (8)0.0552 (9)0.0468 (8)0.0118 (6)0.0047 (6)−0.0083 (6)
C180.0394 (7)0.0499 (8)0.0505 (8)0.0019 (6)0.0051 (6)−0.0001 (6)
C150.0424 (7)0.0381 (7)0.0407 (7)0.0015 (6)0.0034 (5)0.0035 (5)
C10.0513 (8)0.0511 (8)0.0483 (8)0.0082 (7)−0.0004 (6)−0.0066 (6)
C60.0501 (8)0.0552 (9)0.0423 (8)0.0051 (7)0.0107 (6)0.0101 (6)
C40.0397 (7)0.0461 (8)0.0400 (7)0.0090 (6)0.0017 (5)−0.0001 (6)
C160.0441 (7)0.0650 (9)0.0411 (8)0.0121 (6)0.0021 (6)0.0021 (6)
C190.0554 (9)0.0474 (8)0.0565 (9)0.0047 (7)0.0124 (7)0.0122 (7)
C30.0406 (7)0.0574 (9)0.0442 (7)0.0124 (6)0.0045 (6)0.0001 (6)
C170.0595 (9)0.0679 (10)0.0404 (8)0.0165 (7)0.0082 (6)0.0074 (7)
C200.0618 (11)0.0954 (15)0.1158 (18)0.0141 (10)0.0283 (11)0.0259 (13)

Geometric parameters (Å, °)

N2—C31.3501 (17)C7—C61.391 (2)
N2—C21.3769 (18)C7—C81.4142 (18)
N2—C41.4336 (18)C10—C111.3909 (19)
N4—C181.3512 (18)C10—C151.4116 (19)
N4—C161.3750 (18)C11—H110.9300
N4—C131.4299 (17)C8—C151.4428 (19)
N5—C181.3135 (19)C14—C151.3913 (19)
N5—C171.370 (2)C14—H140.9300
N1—C31.3039 (18)C2—C11.344 (2)
N1—C11.3748 (19)C2—H20.9300
N3—C71.3867 (18)C18—H180.9300
N3—C101.3867 (18)C1—H10.9300
N3—C191.4629 (18)C6—H60.9300
C13—C141.3844 (18)C16—C171.350 (2)
C13—C121.403 (2)C16—H160.9300
C5—C61.378 (2)C19—C201.483 (2)
C5—C41.400 (2)C19—H19A0.9700
C5—H50.9300C19—H19B0.9700
C9—C41.3820 (19)C3—H30.9300
C9—C81.3960 (18)C17—H170.9300
C9—H90.9300C20—H20A0.9600
C12—C111.378 (2)C20—H20B0.9600
C12—H120.9300C20—H20C0.9600
C3—N2—C2105.71 (11)C1—C2—H2126.8
C3—N2—C4127.00 (11)N2—C2—H2126.8
C2—N2—C4127.18 (11)N5—C18—N4112.78 (12)
C18—N4—C16105.83 (11)N5—C18—H18123.6
C18—N4—C13126.09 (11)N4—C18—H18123.6
C16—N4—C13128.00 (11)C14—C15—C10119.99 (12)
C18—N5—C17104.42 (12)C14—C15—C8133.50 (12)
C3—N1—C1104.81 (11)C10—C15—C8106.43 (12)
C7—N3—C10108.52 (11)C2—C1—N1110.27 (13)
C7—N3—C19125.61 (12)C2—C1—H1124.9
C10—N3—C19125.58 (12)N1—C1—H1124.9
C14—C13—C12121.06 (12)C5—C6—C7118.08 (13)
C14—C13—N4119.69 (12)C5—C6—H6121.0
C12—C13—N4119.18 (11)C7—C6—H6121.0
C6—C5—C4120.98 (13)C9—C4—C5121.53 (13)
C6—C5—H5119.5C9—C4—N2119.89 (12)
C4—C5—H5119.5C5—C4—N2118.56 (12)
C4—C9—C8118.25 (13)C17—C16—N4106.22 (13)
C4—C9—H9120.9C17—C16—H16126.9
C8—C9—H9120.9N4—C16—H16126.9
C11—C12—C13120.91 (12)N3—C19—C20112.98 (14)
C11—C12—H12119.5N3—C19—H19A109.0
C13—C12—H12119.5C20—C19—H19A109.0
N3—C7—C6129.66 (13)N3—C19—H19B109.0
N3—C7—C8108.93 (12)C20—C19—H19B109.0
C6—C7—C8121.33 (13)H19A—C19—H19B107.8
N3—C10—C11129.53 (13)N1—C3—N2112.77 (12)
N3—C10—C15109.31 (12)N1—C3—H3123.6
C11—C10—C15121.11 (13)N2—C3—H3123.6
C12—C11—C10118.32 (13)C16—C17—N5110.75 (13)
C12—C11—H11120.8C16—C17—H17124.6
C10—C11—H11120.8N5—C17—H17124.6
C9—C8—C7119.82 (12)C19—C20—H20A109.5
C9—C8—C15133.27 (12)C19—C20—H20B109.5
C7—C8—C15106.82 (12)H20A—C20—H20B109.5
C13—C14—C15118.58 (12)C19—C20—H20C109.5
C13—C14—H14120.7H20A—C20—H20C109.5
C15—C14—H14120.7H20B—C20—H20C109.5
C1—C2—N2106.44 (12)
C18—N4—C13—C14−44.43 (19)C13—C14—C15—C8−175.75 (14)
C16—N4—C13—C14139.43 (14)N3—C10—C15—C14−176.74 (11)
C18—N4—C13—C12132.48 (14)C11—C10—C15—C141.0 (2)
C16—N4—C13—C12−43.66 (19)N3—C10—C15—C80.35 (15)
C14—C13—C12—C110.2 (2)C11—C10—C15—C8178.06 (12)
N4—C13—C12—C11−176.63 (11)C9—C8—C15—C14−0.2 (3)
C10—N3—C7—C6176.82 (13)C7—C8—C15—C14176.22 (14)
C19—N3—C7—C62.8 (2)C9—C8—C15—C10−176.67 (14)
C10—N3—C7—C80.07 (15)C7—C8—C15—C10−0.30 (15)
C19—N3—C7—C8−173.96 (13)N2—C2—C1—N10.16 (17)
C7—N3—C10—C11−177.73 (13)C3—N1—C1—C2−0.17 (17)
C19—N3—C10—C11−3.7 (2)C4—C5—C6—C7−0.9 (2)
C7—N3—C10—C15−0.26 (16)N3—C7—C6—C5−175.61 (13)
C19—N3—C10—C15173.77 (13)C8—C7—C6—C50.8 (2)
C13—C12—C11—C101.1 (2)C8—C9—C4—C50.6 (2)
N3—C10—C11—C12175.49 (13)C8—C9—C4—N2−177.63 (11)
C15—C10—C11—C12−1.7 (2)C6—C5—C4—C90.3 (2)
C4—C9—C8—C7−0.7 (2)C6—C5—C4—N2178.49 (12)
C4—C9—C8—C15175.30 (14)C3—N2—C4—C955.86 (19)
N3—C7—C8—C9177.10 (12)C2—N2—C4—C9−128.49 (15)
C6—C7—C8—C90.0 (2)C3—N2—C4—C5−122.38 (15)
N3—C7—C8—C150.15 (15)C2—N2—C4—C553.27 (19)
C6—C7—C8—C15−176.93 (13)C18—N4—C16—C170.40 (16)
C12—C13—C14—C15−1.0 (2)C13—N4—C16—C17177.15 (13)
N4—C13—C14—C15175.86 (11)C7—N3—C19—C20−89.67 (19)
C3—N2—C2—C1−0.09 (16)C10—N3—C19—C2097.30 (19)
C4—N2—C2—C1−176.48 (13)C1—N1—C3—N20.11 (16)
C17—N5—C18—N40.02 (16)C2—N2—C3—N1−0.02 (16)
C16—N4—C18—N5−0.26 (16)C4—N2—C3—N1176.39 (12)
C13—N4—C18—N5−177.10 (12)N4—C16—C17—N5−0.41 (18)
C13—C14—C15—C100.4 (2)C18—N5—C17—C160.24 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···N1i0.932.733.533 (2)144
C2—H2···N1ii0.932.633.452 (2)148
C16—H16···N5ii0.932.683.509 (2)149
C14—H14···N5iii0.932.663.570 (2)165

Symmetry codes: (i) −x, −y, −z; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2412).

References

  • Bruker (2002). SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Mi, B. X., Wang, P. F., Liu, M. W., Kwong, H. L., Wong, N. B., Lee, C. S. & Lee, S. T. (2003). Chem. Mater.15, 3148–3151.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography