PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m848–m849.
Published online 2008 May 30. doi:  10.1107/S1600536808015195
PMCID: PMC2961438

Bis(S-benzyl­isothio­uronium) tetra­chloridozincate(II)

Abstract

The asymmetric unit of the title compound, (C8H11N2S)2[ZnCl4], contains two S-benzyl­isothio­uronium cations which differ in the C—C—S—C torsion angle [165.3 (2) and 81.9 (2)°] and a tetrahedral tetra­chloridozincate anion. The crystal structure is stabilized by N—H(...)Cl, C—H(...)Cl and C—H(...)S inter­actions.

Related literature

For related literature, see: Hemalatha et al. (2006 [triangle]); Zhang et al. (1994 [triangle]); Barker & Powell (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m848-scheme1.jpg

Experimental

Crystal data

  • (C8H11N2S)2[ZnCl4]
  • M r = 541.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m848-efi1.jpg
  • a = 15.2135 (11) Å
  • b = 6.4475 (5) Å
  • c = 23.9277 (18) Å
  • β = 95.368 (1)°
  • V = 2336.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.70 mm−1
  • T = 293 (2) K
  • 0.27 × 0.23 × 0.21 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: none
  • 25129 measured reflections
  • 5481 independent reflections
  • 4986 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.073
  • S = 1.08
  • 5481 reflections
  • 244 parameters
  • H-atom parameters constrained
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015195/bt2708sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015195/bt2708Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

DG thanks the Council of Scientific and Industrial Research (CSIR), India, for a Senior Research Fellowship. Financial support from the University Grants Commission (UGC-SAP) and the Department of Science & Technology (DST-FIST), Government of India, is acknowledged by DV for providing facilities to the department.

supplementary crystallographic information

Comment

Most organic nonlinear optical (NLO) crystals have usually poor mechanical and thermal properties, and are susceptible to damage during processing. It is difficult to grow large optical quality crystals of these materials for device applications (Zhang et al., 1994). For further enhancement of NLO property many efforts have been made on developing new semiorganic NLO materials. The title compound is one of the new metalorganic nonlinear optical crystals. It combines the advantages of both organic and inorganic materials.

The C—N, S—C bond lengths and C—S—C and N—C—N bond angles are comparable with the similar structure reported earlier (Barker & Powell, 1998). There is a difference in the torsion angles C6—C7—S1—C8 [165.3 (2)°] and C14—C15—S2—C16 [81.9 (2)°] in the two molecules which indicates a difference in the conformation of the two molecules in the asymmetric unit.

The crystal structure (Figs. 2 and 3) is stabilized by N—H···Cl, C—H···Cl and C—H···S interactions.

Experimental

First S-benzylisothiouronium chloride (SBTC) was synthesized as discussed in an earlier report (Hemalatha et al., 2006). The solutions of SBTC (5 g m) and zinc chloride (1 g m) were prepared separately in minimum amount of water. Then the solutions were mixed together and stirred for 1 hr at 45°C. The resulting complex was filtered and thoroughly washed with distilled water. The product was recrystallized repeatedly from 0.2 M hydrochloric solution to grow transparent and good quality single crystals for NLO applications. Needle shape crystals were obtained from the saturated solution (with water) of the title compound by slow evaporation technique at room temperature.

Refinement

All H-atoms were refined using a riding model with d(C—H) = 0.93 Å or d(N—H) = 0.86 Å Uiso=1.2Ueq (C,N) and 0.97 Å, Uiso = 1.2Ueq (C) for CH2.

Figures

Fig. 1.
The molecular structure of title compound, showing 30% probability displacement ellipsoids.
Fig. 2.
The molecular packing of the title compound showing N—H···Cl interactions viewed down c axis.
Fig. 3.
The molecular packing of the title compound showing C—H···Cl interactions viewed down c axis.

Crystal data

(C8H11N2S)2[ZnCl4]F000 = 1104
Mr = 541.67Dx = 1.540 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2794 reflections
a = 15.2135 (11) Åθ = 1.3–25.0º
b = 6.4475 (5) ŵ = 1.70 mm1
c = 23.9277 (18) ÅT = 293 (2) K
β = 95.3680 (10)ºNeedle, colorless
V = 2336.8 (3) Å30.27 × 0.23 × 0.21 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer4986 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Monochromator: graphiteθmax = 28.0º
T = 293(2) Kθmin = 1.3º
ω scansh = −20→20
Absorption correction: nonek = −8→8
25129 measured reflectionsl = −30→31
5481 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.073  w = 1/[σ2(Fo2) + (0.0325P)2 + 1.0433P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5481 reflectionsΔρmax = 0.41 e Å3
244 parametersΔρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.38843 (3)0.61059 (12)0.36896 (3)0.06677 (19)
N10.42614 (13)0.2947 (3)0.43326 (8)0.0562 (5)
H1A0.45890.21330.45470.067*
H1B0.37090.26760.42580.067*
C10.36865 (17)1.0458 (4)0.28381 (11)0.0598 (6)
H10.37741.11790.31750.072*
C20.31899 (18)1.1338 (5)0.23884 (15)0.0783 (8)
H20.29491.26520.24230.094*
C30.3052 (2)1.0311 (7)0.19011 (14)0.0869 (10)
H30.27181.09200.16000.104*
C40.3395 (2)0.8398 (7)0.18442 (11)0.0867 (10)
H40.32930.76930.15050.104*
C50.39016 (18)0.7482 (4)0.22921 (12)0.0663 (7)
H50.41370.61650.22520.080*
C60.40541 (13)0.8523 (4)0.27928 (9)0.0475 (5)
C70.46069 (15)0.7581 (4)0.32779 (11)0.0664 (7)
H7A0.49030.86610.35060.080*
H7B0.50520.66800.31430.080*
C80.46009 (12)0.4585 (3)0.41203 (8)0.0399 (4)
S20.06186 (3)0.66804 (7)0.41032 (2)0.04038 (11)
N20.54328 (12)0.5038 (3)0.42243 (9)0.0555 (5)
H2A0.57720.42460.44380.067*
H2B0.56440.61300.40790.067*
C90.15114 (15)0.6634 (4)0.27656 (10)0.0578 (6)
H90.17420.79170.28800.069*
C100.13285 (18)0.6205 (6)0.22003 (11)0.0757 (8)
H100.14420.72030.19360.091*
C110.09845 (18)0.4338 (5)0.20262 (11)0.0743 (8)
H110.08590.40750.16450.089*
C120.08244 (17)0.2855 (5)0.24096 (10)0.0651 (7)
H120.05880.15830.22900.078*
C130.10135 (14)0.3240 (4)0.29755 (9)0.0505 (5)
H130.09140.22130.32350.061*
C140.13496 (11)0.5144 (3)0.31602 (8)0.0395 (4)
C150.15495 (11)0.5601 (3)0.37715 (8)0.0377 (4)
H15A0.20380.65720.38180.045*
H15B0.17370.43300.39640.045*
C16−0.00143 (12)0.4549 (3)0.42524 (8)0.0373 (4)
N3−0.08381 (12)0.4941 (3)0.43308 (8)0.0527 (4)
H3A−0.11800.39530.44180.063*
H3B−0.10380.61870.42950.063*
N40.03000 (12)0.2657 (3)0.43054 (8)0.0519 (4)
H4A−0.00360.16580.43920.062*
H4B0.08420.24150.42530.062*
Cl10.85432 (4)−0.02098 (8)0.44408 (3)0.05782 (15)
Cl20.76342 (3)−0.05687 (7)0.57924 (2)0.04173 (11)
Cl30.60408 (3)−0.01885 (8)0.44970 (3)0.05317 (14)
Cl40.73327 (3)0.42677 (7)0.49034 (2)0.04099 (11)
Zn10.738101 (13)0.07662 (3)0.491654 (9)0.03552 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0303 (2)0.0860 (4)0.0846 (4)0.0098 (3)0.0085 (2)0.0446 (4)
N10.0452 (10)0.0590 (11)0.0640 (12)−0.0027 (8)0.0029 (8)0.0212 (9)
C10.0585 (14)0.0609 (14)0.0607 (14)−0.0017 (11)0.0088 (11)0.0033 (11)
C20.0582 (15)0.0761 (18)0.101 (2)0.0120 (14)0.0101 (15)0.0311 (18)
C30.0568 (16)0.128 (3)0.073 (2)−0.0069 (18)−0.0079 (14)0.039 (2)
C40.079 (2)0.135 (3)0.0459 (14)−0.027 (2)0.0053 (13)−0.0046 (17)
C50.0617 (15)0.0708 (16)0.0684 (16)−0.0033 (12)0.0167 (12)−0.0063 (13)
C60.0359 (9)0.0567 (12)0.0498 (11)−0.0044 (9)0.0043 (8)0.0124 (10)
C70.0423 (12)0.0819 (18)0.0735 (16)−0.0119 (11)−0.0031 (11)0.0342 (13)
C80.0349 (9)0.0424 (10)0.0426 (10)0.0044 (7)0.0041 (7)0.0031 (8)
S20.0369 (2)0.0350 (2)0.0500 (3)−0.00065 (18)0.00816 (19)−0.00128 (19)
N20.0386 (9)0.0523 (10)0.0724 (13)−0.0025 (8)−0.0125 (8)0.0143 (9)
C90.0515 (12)0.0654 (14)0.0565 (13)−0.0130 (11)0.0048 (10)0.0116 (11)
C100.0635 (15)0.113 (2)0.0521 (14)−0.0118 (16)0.0110 (12)0.0252 (15)
C110.0585 (15)0.123 (3)0.0408 (12)−0.0074 (16)0.0039 (11)−0.0090 (14)
C120.0599 (14)0.0816 (17)0.0530 (13)−0.0095 (13)0.0019 (11)−0.0212 (12)
C130.0502 (12)0.0544 (12)0.0466 (11)−0.0072 (10)0.0025 (9)−0.0054 (9)
C140.0277 (8)0.0497 (10)0.0409 (10)−0.0010 (7)0.0021 (7)−0.0001 (8)
C150.0285 (8)0.0400 (9)0.0442 (10)−0.0021 (7)0.0004 (7)−0.0029 (7)
C160.0372 (9)0.0397 (9)0.0351 (9)−0.0016 (7)0.0040 (7)0.0021 (7)
N30.0406 (9)0.0461 (9)0.0741 (12)−0.0004 (7)0.0188 (8)0.0060 (9)
N40.0483 (10)0.0402 (9)0.0687 (12)0.0002 (7)0.0130 (9)0.0119 (8)
Cl10.0586 (3)0.0431 (3)0.0774 (4)0.0024 (2)0.0365 (3)−0.0026 (2)
Cl20.0459 (2)0.0367 (2)0.0417 (2)−0.00012 (18)−0.00090 (18)0.00612 (17)
Cl30.0417 (3)0.0453 (3)0.0688 (3)−0.0069 (2)−0.0143 (2)0.0068 (2)
Cl40.0366 (2)0.0346 (2)0.0508 (3)0.00228 (16)−0.00096 (19)0.00113 (18)
Zn10.03067 (11)0.03633 (12)0.03951 (12)0.00107 (8)0.00309 (8)0.00358 (8)

Geometric parameters (Å, °)

S1—C81.732 (2)C9—C101.383 (4)
S1—C71.813 (2)C9—C141.385 (3)
N1—C81.300 (3)C9—H90.9300
N1—H1A0.8600C10—C111.362 (4)
N1—H1B0.8600C10—H100.9300
C1—C61.376 (3)C11—C121.363 (4)
C1—C21.378 (4)C11—H110.9300
C1—H10.9300C12—C131.380 (3)
C2—C31.340 (5)C12—H120.9300
C2—H20.9300C13—C141.386 (3)
C3—C41.351 (5)C13—H130.9300
C3—H30.9300C14—C151.495 (3)
C4—C51.391 (4)C15—H15A0.9700
C4—H40.9300C15—H15B0.9700
C5—C61.374 (3)C16—N31.309 (2)
C5—H50.9300C16—N41.312 (2)
C6—C71.497 (3)N3—H3A0.8600
C7—H7A0.9700N3—H3B0.8600
C7—H7B0.9700N4—H4A0.8600
C8—N21.300 (3)N4—H4B0.8600
S2—C161.734 (2)Cl1—Zn12.2792 (5)
S2—C151.825 (2)Cl2—Zn12.2650 (5)
N2—H2A0.8600Cl3—Zn12.2718 (5)
N2—H2B0.8600Cl4—Zn12.2589 (5)
C8—S1—C7103.9 (1)C14—C9—H9120.1
C8—N1—H1A120.0C11—C10—C9120.8 (3)
C8—N1—H1B120.0C11—C10—H10119.6
H1A—N1—H1B120.0C9—C10—H10119.6
C6—C1—C2120.6 (3)C10—C11—C12120.1 (2)
C6—C1—H1119.7C10—C11—H11119.9
C2—C1—H1119.7C12—C11—H11119.9
C3—C2—C1120.4 (3)C11—C12—C13120.0 (2)
C3—C2—H2119.8C11—C12—H12120.0
C1—C2—H2119.8C13—C12—H12120.0
C2—C3—C4120.6 (3)C12—C13—C14120.6 (2)
C2—C3—H3119.7C12—C13—H13119.7
C4—C3—H3119.7C14—C13—H13119.7
C3—C4—C5120.1 (3)C9—C14—C13118.7 (2)
C3—C4—H4120.0C9—C14—C15119.82 (19)
C5—C4—H4120.0C13—C14—C15121.44 (18)
C6—C5—C4120.0 (3)C14—C15—S2113.93 (12)
C6—C5—H5120.0C14—C15—H15A108.8
C4—C5—H5120.0S2—C15—H15A108.8
C5—C6—C1118.3 (2)C14—C15—H15B108.8
C5—C6—C7121.0 (2)S2—C15—H15B108.8
C1—C6—C7120.6 (2)H15A—C15—H15B107.7
C6—C7—S1108.00 (15)N3—C16—N4120.7 (2)
C6—C7—H7A110.1N3—C16—S2115.7 (2)
S1—C7—H7A110.1N4—C16—S2123.5 (2)
C6—C7—H7B110.1C16—N3—H3A120.0
S1—C7—H7B110.1C16—N3—H3B120.0
H7A—C7—H7B108.4H3A—N3—H3B120.0
N1—C8—N2121.5 (2)C16—N4—H4A120.0
N1—C8—S1116.2 (2)C16—N4—H4B120.0
N2—C8—S1122.3 (2)H4A—N4—H4B120.0
C16—S2—C15104.82 (9)Cl4—Zn1—Cl2113.28 (2)
C8—N2—H2A120.0Cl4—Zn1—Cl3103.76 (2)
C8—N2—H2B120.0Cl2—Zn1—Cl3111.95 (2)
H2A—N2—H2B120.0Cl4—Zn1—Cl1107.14 (2)
C10—C9—C14119.7 (2)Cl2—Zn1—Cl1106.53 (2)
C10—C9—H9120.1Cl3—Zn1—Cl1114.24 (3)
C6—C1—C2—C30.5 (4)C14—C9—C10—C110.5 (4)
C1—C2—C3—C40.2 (5)C9—C10—C11—C12−0.7 (5)
C2—C3—C4—C5−0.5 (5)C10—C11—C12—C13−0.2 (4)
C3—C4—C5—C6−0.1 (4)C11—C12—C13—C141.3 (4)
C4—C5—C6—C10.8 (4)C10—C9—C14—C130.6 (3)
C4—C5—C6—C7−179.1 (2)C10—C9—C14—C15179.8 (2)
C2—C1—C6—C5−1.0 (4)C12—C13—C14—C9−1.5 (3)
C2—C1—C6—C7178.9 (2)C12—C13—C14—C15179.3 (2)
C5—C6—C7—S1−89.8 (2)C9—C14—C15—S291.8 (2)
C1—C6—C7—S190.3 (2)C13—C14—C15—S2−89.0 (2)
C8—S1—C7—C6165.34 (19)C16—S2—C15—C1481.90 (15)
C7—S1—C8—N1−159.52 (19)C15—S2—C16—N3−159.78 (16)
C7—S1—C8—N220.0 (2)C15—S2—C16—N422.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl30.862.683.372 (2)139
N1—H1B···Cl2i0.862.453.255 (2)157
N2—H2A···Cl40.862.533.219 (2)138
N2—H2B···Cl3ii0.862.623.262 (2)132
N3—H3A···Cl1iii0.862.723.469 (2)147
N3—H3A···Cl4iii0.862.653.244 (2)128
N3—H3B···Cl1iv0.862.443.283 (2)166
N4—H4A···Cl1iii0.862.493.290 (2)156
N4—H4B···Cl2i0.862.623.447 (2)163
C15—H15A···S10.972.873.591 (2)132
C15—H15A···Cl2v0.972.773.556 (2)139
C15—H15B···Cl2i0.972.653.594 (2)164

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y+1, z; (iii) x−1, y, z; (iv) x−1, y+1, z; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2708).

References

  • Barker, J. & Powell, H. R. (1998). Acta Cryst. C54, 2019–2021.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hemalatha, P., Veeravazhuthi, V., Mallika, J., Narayanadass, S. K. & Mangalaraj, D. (2006). Cryst. Res. Tech.41, 775–779.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Zhang, H. W., Batra, A. K. & Lal, R. B. (1994). J. Cryst. Growth.137, 141–145.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography