PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1161.
Published online 2008 May 30. doi:  10.1107/S1600536808015468
PMCID: PMC2961434

Bis[(dimethyl-λ4-sulfanyl­idene)oxonium] hexa­bromidotellurate(IV) dimethyl sulfoxide disolvate

Abstract

The structure of the title salt, 2C2H7OS+·Br6Te2−·2C2H6OS, displays O—H(...)O hydrogen bonding between one protonated dimethyl sulfoxide mol­ecule and a neighboring dimethyl sulfoxide mol­ecule, and an octa­hedral geometry for the Te atom; the latter is situated on a center of inversion.

Related literature

For the structure of the related compound [(dmso-H)2][TeCl6], see: Laitinen et al. (2002 [triangle]); Viossat et al. (1981 [triangle]). For related literature, see Abriel (1987 [triangle]); Abriel & du Bois (1989 [triangle]); Borgias et al. (1985 [triangle]); Jaswal et al. (1990 [triangle]); Keefer et al. (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1161-scheme1.jpg

Experimental

Crystal data

  • 2C2H7OS+·Br6Te2−·2C2H6OS
  • M r = 921.59
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1161-efi1.jpg
  • a = 8.0087 (2) Å
  • b = 9.2428 (2) Å
  • c = 10.5249 (3) Å
  • α = 66.280 (1)°
  • β = 70.732 (1)°
  • γ = 66.340 (1)°
  • V = 639.98 (3) Å3
  • Z = 1
  • Cu Kα radiation
  • μ = 23.30 mm−1
  • T = 100 (2) K
  • 0.23 × 0.20 × 0.16 mm

Data collection

  • Bruker APEX2 CCD detector diffractometer
  • Absorption correction: numerical [based on real shape of the crystal; absorption correction followed by the application of SADABS (Bruker, 2005 [triangle])] T min = 0.075, T max = 0.118
  • 5232 measured reflections
  • 2112 independent reflections
  • 2112 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.056
  • S = 1.15
  • 2112 reflections
  • 159 parameters
  • All H-atom parameters refined
  • Δρmax = 1.02 e Å−3
  • Δρmin = −0.68 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: XS in SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Bruker, 1998 [triangle]); software used to prepare material for publication: XCIF in SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015468/tk2262sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015468/tk2262Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported in part by a University of Wisconsin Colleges Summer Faculty Research Grant. MDR acknowledges Marquette University for the use of X-ray diffraction facilities and the University of Wisconsin - Fox Valley’s Professional Development Committee for travel funding.

supplementary crystallographic information

Comment

The structure of (I) consists of two units of two H+ hydrogen bonded dimethylsulfoxide molecules, Fig. 1, and a centrosymmetric hexabromotellurate(IV) anion, Fig. 2. At 2.448 (4) Å, the O1···O2 distance is relatively short, and is consistent with the presence of a moderately strong hydrogen bond (Keefer et al., 1988). The IR spectrum reveals peaks typical for the [(dmso)2H]+ cation with a strong band at 731 cm-1. This is in line with similar samples in which the same cation has been analyzed (Jaswal et al., 1990). A closely related tellurium complex, [(dmso)2H]2[TeCl6] has been structurally reported at room temperature (Viossat et al., 1981) and at low temperature (Laitinen et al., 2002). The cation in the latter experiment shows a O1···O2 distance of 2.435 (3) Å and the authors describe this as a "relatively strong hydrogen bond".

The hexabromotellurate(IV) anion in (I) shows an approximately octahedral geometry as expected. A review of some related structures shows that there are packing factors that slightly distort the geometry. One example where [TeBr6]2- shows deviations away from the regular octahedral geometry indicates that there is a 0.024Å difference between the longest and shortest bond Te—Br bond lengths (Borgias et al., 1985). In that report, the Te atom is located in a general position. In other literature, the Te is located at a center of inversion and displays a larger angular deviation from 90° [87.56 (3) - 92.44 (3)°] (Abriel & du Bois, 1989) which is greater than those reported here [less than 0.9° away from 90°]. A review of structural data for MX6E2- compounds (M = Se, Te and X = Cl, Br, I) was published to provide an explanation of the stereochemistry of the lone pair electrons (Abriel, 1987).

The unit cell shows, Fig. 3, the pairs of hydrogen bonded dmso molecule and dmso-H ions and anions, Table 1.

Experimental

Compound (I) was prepared by the slow cooling to room temperature of a hot solution (333 K) of tellurium dioxide (0.30 g, 0.19 mmol) dissolved in hydrobromic acid (1 mL) to which dimethylsulfoxide (5 mL) had been added. After 2 weeks, a crop of orange crystals formed although they are prone to solvent loss and decomposition. Analysis found: C 10.57; H 2.91; C8H26Br6O4S4Te requires: C 10.42, H 2.84. The IR spectrum showed strong bands at 3392, 1056, 731 cm-1.

Refinement

The maximum and minimum electron density peaks of 1.01 and -0.68 e Å-3, respectively, are located 0.88 and 1.53 Å, respectively, from the Te atom. Hydrogen atoms positions were refined freely with C-H = 0.83 (7) - 1.03 (6) Å.

Figures

Fig. 1.
Numbering Scheme for [(DMSO)2H]+ (the hydrogen bond is shown as a dashed line). Displacement ellipsoids are shown at the 50% level.
Fig. 2.
Numbering Scheme for [TeBr6]2-. Displacement ellipsoids are shown at the 50% level.
Fig. 3.
Hydrogen-bond formation and projection of the unit cell content of [(DMSO)2H]2[TeBr6]. Symmetry operators: Te1A [x, y+1, z]; O1A and O2A [1-x, 1-y, -z]; O1B and O2B [x, y, z+1]

Crystal data

2C2H7OS+·Br6Te2–·2C2H6OSZ = 1
Mr = 921.59F000 = 432
Triclinic, P1Dx = 2.391 Mg m3
Hall symbol: -P 1Melting point: 343 K
a = 8.0087 (2) ÅCu Kα radiation λ = 1.54178 Å
b = 9.2428 (2) ÅCell parameters from 4736 reflections
c = 10.5249 (3) Åθ = 5–66º
α = 66.280 (1)ºµ = 23.30 mm1
β = 70.732 (1)ºT = 100 (2) K
γ = 66.340 (1)ºBlock, orange
V = 639.98 (3) Å30.23 × 0.20 × 0.16 mm

Data collection

Bruker APEX2 CCD detector diffractometer2112 independent reflections
Radiation source: fine-focus sealed tube2112 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 100(2) Kθmax = 66.8º
ω scansθmin = 4.7º
Absorption correction: numerical[based on real shape of the crystal; absorption correction followed by the application of SADABS (Bruker, 2005)]h = −8→9
Tmin = 0.075, Tmax = 0.118k = −9→10
5232 measured reflectionsl = 0→12

Refinement

Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.021  w = 1/[σ2(Fo2) + (0.0268P)2 + 1.1408P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max = 0.004
S = 1.15Δρmax = 1.02 e Å3
2112 reflectionsΔρmin = −0.68 e Å3
159 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00507 (17)
Secondary atom site location: difference Fourier map

Special details

Experimental. Analysis found: C 10.57; H 2.91; C~8~H~26~Br~6Õ~4~S~4~Te requires: C 10.42, H 2.84
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Te10.50000.00000.50000.01240 (12)
Br10.47203 (5)0.30103 (4)0.30479 (4)0.01875 (12)
Br20.13998 (5)0.11843 (5)0.62389 (4)0.01970 (12)
Br30.39388 (5)−0.09389 (5)0.33507 (4)0.02004 (12)
S10.72250 (12)0.24280 (11)−0.11647 (9)0.0176 (2)
O10.8060 (4)0.2997 (3)−0.0395 (3)0.0229 (6)
C10.4776 (5)0.3040 (5)−0.0455 (4)0.0213 (8)
H1A0.459 (7)0.246 (6)0.054 (5)0.030 (12)*
H1B0.440 (7)0.421 (7)−0.066 (5)0.032 (13)*
H1C0.424 (6)0.263 (6)−0.088 (5)0.026 (12)*
C20.7743 (6)0.0237 (5)−0.0301 (4)0.0215 (8)
H2A0.700 (7)−0.016 (6)−0.060 (5)0.027 (11)*
H2B0.741 (6)0.002 (6)0.070 (5)0.027 (12)*
H2C0.907 (7)−0.020 (6)−0.066 (5)0.025 (11)*
S21.03170 (12)0.54942 (12)−0.30476 (10)0.0219 (2)
O21.0726 (4)0.4039 (4)−0.1636 (3)0.0256 (6)
H2O0.985 (10)0.364 (9)−0.123 (8)0.07 (2)*
C31.2525 (6)0.5183 (6)−0.4190 (5)0.0266 (9)
H3A1.340 (7)0.519 (6)−0.369 (5)0.029 (12)*
H3B1.245 (7)0.614 (7)−0.496 (6)0.040 (14)*
H3C1.284 (8)0.410 (7)−0.440 (6)0.049 (15)*
C41.0161 (7)0.7251 (6)−0.2660 (6)0.0321 (10)
H4A1.015 (7)0.822 (7)−0.346 (6)0.040 (14)*
H4B0.913 (8)0.747 (7)−0.207 (6)0.043 (15)*
H4C1.125 (7)0.695 (6)−0.222 (5)0.035 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Te10.01221 (17)0.01490 (18)0.01250 (17)−0.00478 (12)−0.00205 (12)−0.00641 (12)
Br10.0217 (2)0.0180 (2)0.0169 (2)−0.00800 (15)−0.00436 (15)−0.00352 (15)
Br20.0143 (2)0.0229 (2)0.0215 (2)−0.00556 (15)0.00073 (15)−0.01025 (16)
Br30.0237 (2)0.0221 (2)0.0211 (2)−0.00733 (16)−0.00826 (16)−0.01003 (16)
S10.0187 (4)0.0208 (4)0.0158 (4)−0.0096 (4)−0.0020 (3)−0.0059 (3)
O10.0228 (14)0.0314 (15)0.0234 (13)−0.0161 (12)−0.0018 (11)−0.0118 (11)
C10.0215 (19)0.026 (2)0.022 (2)−0.0115 (17)−0.0024 (16)−0.0095 (17)
C20.025 (2)0.0208 (19)0.021 (2)−0.0087 (17)−0.0077 (17)−0.0047 (16)
S20.0167 (4)0.0226 (5)0.0279 (5)−0.0070 (4)−0.0058 (4)−0.0075 (4)
O20.0243 (15)0.0295 (15)0.0261 (14)−0.0158 (13)−0.0052 (12)−0.0042 (12)
C30.026 (2)0.028 (2)0.028 (2)−0.0117 (18)0.0002 (18)−0.0107 (18)
C40.024 (2)0.025 (2)0.049 (3)−0.0039 (18)−0.002 (2)−0.021 (2)

Geometric parameters (Å, °)

Te1—Br1i2.6865 (4)C2—H2B0.95 (5)
Te1—Br12.6865 (4)C2—H2C0.97 (5)
Te1—Br32.6956 (4)S2—O21.576 (3)
Te1—Br3i2.6956 (4)S2—C31.767 (4)
Te1—Br2i2.7103 (4)S2—C41.776 (4)
Te1—Br22.7103 (4)O2—H2O0.83 (7)
S1—O11.537 (3)C3—H3A1.00 (5)
S1—C21.787 (4)C3—H3B0.92 (6)
S1—C11.791 (4)C3—H3C1.03 (6)
C1—H1A0.96 (5)C4—H4A0.95 (6)
C1—H1B0.95 (5)C4—H4B0.86 (6)
C1—H1C0.97 (5)C4—H4C1.01 (5)
C2—H2A0.98 (5)
Br1i—Te1—Br1180.0H1B—C1—H1C117 (4)
Br1i—Te1—Br389.604 (11)S1—C2—H2A107 (3)
Br1—Te1—Br390.395 (11)S1—C2—H2B110 (3)
Br1i—Te1—Br3i90.397 (11)H2A—C2—H2B110 (4)
Br1—Te1—Br3i89.604 (11)S1—C2—H2C103 (3)
Br3—Te1—Br3i179.999 (1)H2A—C2—H2C112 (4)
Br1i—Te1—Br2i89.151 (11)H2B—C2—H2C114 (4)
Br1—Te1—Br2i90.849 (11)O2—S2—C3102.38 (19)
Br3—Te1—Br2i89.485 (12)O2—S2—C4102.5 (2)
Br3i—Te1—Br2i90.515 (11)C3—S2—C4100.2 (2)
Br1i—Te1—Br290.848 (11)S2—O2—H2O112 (5)
Br1—Te1—Br289.151 (11)S2—C3—H3A106 (3)
Br3—Te1—Br290.515 (11)S2—C3—H3B107 (3)
Br3i—Te1—Br289.485 (12)H3A—C3—H3B104 (4)
Br2i—Te1—Br2180.0S2—C3—H3C107 (3)
O1—S1—C2103.95 (17)H3A—C3—H3C115 (4)
O1—S1—C1104.47 (17)H3B—C3—H3C116 (5)
C2—S1—C198.62 (19)S2—C4—H4A114 (3)
S1—C1—H1A108 (3)S2—C4—H4B107 (4)
S1—C1—H1B106 (3)H4A—C4—H4B108 (5)
H1A—C1—H1B113 (4)S2—C4—H4C108 (3)
S1—C1—H1C106 (3)H4A—C4—H4C110 (4)
H1A—C1—H1C108 (4)H4B—C4—H4C111 (5)

Symmetry codes: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2O···O10.83 (7)1.62 (8)2.448 (4)175 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2262).

References

  • Abriel, W. (1987). Z. Naturforsch. Teil B, 43, 415–420.
  • Abriel, W. & du Bois, A. (1989). Acta Cryst. C45, 2002–2003.
  • Borgias, B. A., Scarrow, R. C., Seidler, M. D. & Weiner, W. P. (1985). Acta Cryst. C41, 476–479.
  • Bruker (1998). XP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jaswal, J. S., Rettig, S. J. & James, B. R. (1990). Can. J. Chem.68, 1808–1817.
  • Keefer, L. J., Hrabie, J. A., Ohannesian, L., Flippen-Anderson, J. L. & George, C. (1988). J. Am. Chem. Soc.110, 3701–3708.
  • Laitinen, R. S., Pietikäinen, J., Maaninen, A., Oilunkaniemi, R. & Valkonen, J. (2002). Polyhedron, 21, 1089–1095.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Viossat, B., Khodadad, P. & Rodier, N. (1981). J. Mol. Struct.71, 237–241.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography