PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1129.
Published online 2008 May 21. doi:  10.1107/S1600536808014839
PMCID: PMC2961432

2-Amino-4-methyl­pyridinium 4-amino­benzoate

Abstract

In the structure of the title salt, C6H9N2 +·C7H6NO2 , the 4-amino­benzoate anions are linked to adjacent anions and 2-amino-4-methyl­pyridinium cations via N—H(...)O hydrogen bonds, forming a three-dimensional supra­molecular structure. The crystal structure also shows a weak C—H(...)O hydrogen bond between adjacent anions. Within the 4-amino­benzoate anion, the carboxyl­ate group is twisted by 14.0 (4)° with respect to the benz­ene ring.

Related literature

For general background, see: Choudhury et al. (2007 [triangle]); Halvorson et al. (1987 [triangle]); Geiser et al. (1986 [triangle]); Geiser & Willett (1984 [triangle]). For related structures, see: Kaabi & Khedhiri (2004 [triangle]); Chtioui et al. (2006 [triangle]). For a description of the Cambridge Structural Database, see Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1129-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·C7H6NO2
  • M r = 245.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1129-efi1.jpg
  • a = 5.5734 (14) Å
  • b = 8.8154 (16) Å
  • c = 25.374 (5) Å
  • V = 1246.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 295 (2) K
  • 0.46 × 0.38 × 0.30 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: none
  • 14099 measured reflections
  • 1451 independent reflections
  • 1126 reflections with I > 2σ(I)
  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.095
  • S = 1.04
  • 1451 reflections
  • 165 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014839/ng2457sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014839/ng2457Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the ZIJIN project of Zhejiang University, China.

supplementary crystallographic information

Comment

The presence of the outside lone-pair electrons on the pyridine-N atom suggests that 2-amino-4-methyl-pyridine is an appropriate ligand for preparing metal complexes. However a search of the Cambridge Structure Database (November 2007 update; Allen, 2002) shows that in the most cases the 2-amino-4-methyl-pyridine presents as a counter cation but does not coordinate to the metal ion (Choudhury et al., 2007; Halvorson et al., 1987; Geiser et al., 1986; Geiser & Willett, 1984). This implies that the 2-amino-4-methyl-pyridine, as a weak base, is easy to be protonated in acid condition. The crystal structures of two inorganic salt of 2-amino-4-methyl-pyridine, 2-amino-4-methyl-pyridinium phosphate (Kaabi & Khedhiri, 2004) and 2-amino-4-methyl-pyridinium arsenate (Chtioui et al., 2006), have been reported previously. Recently we prepared the title organic salt of 2-amino-4-methyl-pyridine, and its crystal structure is reported here.

The crystal of the title compound consists of 2-amino-4-methyl-pyridinium cations and amino-benzoate anions (Fig. 1). The smaller difference in C—O bond distances of the carboxyl group (Table 1) indicates the carboxyl group is deprotonated in the crystal. Within the anion the carboxyl group is twisted with respect to the benzene ring by a dihedral angle of 14.0 (4)°. In the crystal, the aminobenzoate anions are linked with both of adjacent aminobenzoate anions and aminomethylpyridinium cations via N—H···O hydrogen bonding, to form the three dimensional supramolecular structure. The crystal structure also contains weak C—H···O hydrogen bonding between adjacent anions.

Experimental

2-Amino-4-methyl-pyridine (0.054 g, 0.5 mmol) and 4-amino-benzoic acid (0.069 g, 0.5 mmol) were dissolved in ethanol (5 ml) at room temperature. The solution was filtered and light brown single crystals were obtained from the filtration after 2 weeks.

Refinement

H atoms bonded to N atoms were located in a difference Fourier map and were refined as riding in as-found relative positions, with Uiso(H) = 1.5Ueq(N). Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and the torsion angle was refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding.

Crystal data

C6H9N2+·C7H6NO2F000 = 520
Mr = 245.28Dx = 1.307 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2654 reflections
a = 5.5734 (14) Åθ = 2.0–25.2º
b = 8.8154 (16) ŵ = 0.09 mm1
c = 25.374 (5) ÅT = 295 (2) K
V = 1246.6 (5) Å3Chunk, light brown
Z = 40.46 × 0.38 × 0.30 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer1451 independent reflections
Radiation source: fine-focus sealed tube1126 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.059
Detector resolution: 10.00 pixels mm-1θmax = 26.0º
T = 295(2) Kθmin = 1.6º
ω scansh = −6→6
Absorption correction: nonek = −10→10
14099 measured reflectionsl = −30→29

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037  w = 1/[σ2(Fo2) + (0.0449P)2 + 0.1505P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.13 e Å3
1451 reflectionsΔρmin = −0.12 e Å3
165 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1−0.5107 (5)0.2323 (3)0.74214 (9)0.0710 (7)
H1A−0.44590.19470.77120.106*
H1B−0.63620.19810.72670.106*
N20.5736 (4)0.8834 (2)0.61196 (7)0.0520 (6)
H2N0.45480.82310.62560.078*
N30.4308 (5)0.8308 (3)0.52906 (8)0.0660 (7)
H3A0.44430.85280.49340.099*
H3B0.30980.77660.54540.099*
O10.0737 (4)0.6432 (2)0.57815 (6)0.0692 (6)
O20.2584 (3)0.6999 (2)0.65310 (6)0.0562 (5)
C1−0.0644 (4)0.5269 (3)0.65687 (9)0.0451 (6)
C2−0.0117 (4)0.4843 (3)0.70832 (9)0.0497 (6)
H20.12490.52330.72440.060*
C3−0.1565 (5)0.3857 (3)0.73617 (9)0.0523 (7)
H3−0.11390.35680.77020.063*
C4−0.3654 (5)0.3295 (3)0.71361 (9)0.0488 (6)
C5−0.4210 (5)0.3741 (3)0.66250 (10)0.0581 (7)
H5−0.56120.33880.64680.070*
C6−0.2727 (5)0.4694 (3)0.63474 (10)0.0550 (7)
H6−0.31290.49600.60040.066*
C70.0980 (5)0.6303 (3)0.62688 (9)0.0479 (6)
C80.5886 (5)0.9037 (3)0.55940 (9)0.0482 (6)
C90.7670 (5)1.0014 (3)0.53990 (10)0.0520 (6)
H90.78151.01560.50370.062*
C100.9189 (5)1.0757 (3)0.57306 (10)0.0551 (7)
C110.8960 (6)1.0501 (3)0.62760 (11)0.0668 (8)
H110.99771.09890.65120.080*
C120.7262 (6)0.9547 (3)0.64526 (10)0.0636 (8)
H120.71310.93720.68130.076*
C131.1031 (6)1.1849 (3)0.55251 (12)0.0742 (8)
H13A1.11231.17660.51480.111*
H13B1.25671.16150.56760.111*
H13C1.05821.28650.56190.111*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0621 (14)0.0843 (17)0.0664 (14)−0.0162 (14)−0.0039 (12)0.0169 (13)
N20.0637 (14)0.0562 (12)0.0360 (11)0.0004 (12)0.0035 (11)0.0007 (9)
N30.0751 (15)0.0825 (16)0.0403 (11)−0.0200 (16)0.0037 (12)−0.0003 (11)
O10.0800 (14)0.0940 (14)0.0336 (9)−0.0151 (13)−0.0001 (10)0.0088 (9)
O20.0660 (11)0.0651 (10)0.0374 (9)−0.0093 (11)0.0020 (10)0.0024 (8)
C10.0495 (14)0.0509 (13)0.0350 (12)0.0068 (13)0.0035 (12)0.0009 (10)
C20.0508 (14)0.0590 (14)0.0391 (13)−0.0028 (13)−0.0028 (11)0.0011 (12)
C30.0537 (16)0.0673 (16)0.0360 (12)−0.0002 (14)−0.0013 (11)0.0086 (13)
C40.0489 (15)0.0536 (14)0.0440 (14)0.0021 (13)0.0023 (12)0.0017 (12)
C50.0525 (15)0.0734 (18)0.0484 (15)−0.0043 (16)−0.0046 (14)−0.0018 (13)
C60.0599 (17)0.0668 (17)0.0383 (14)0.0070 (16)−0.0040 (13)0.0035 (12)
C70.0559 (16)0.0525 (14)0.0354 (13)0.0065 (14)0.0036 (12)0.0021 (11)
C80.0554 (15)0.0498 (13)0.0395 (13)0.0042 (14)0.0032 (12)0.0006 (11)
C90.0635 (16)0.0517 (13)0.0409 (13)0.0048 (15)0.0058 (13)0.0019 (11)
C100.0574 (16)0.0479 (14)0.0598 (16)0.0027 (14)0.0011 (15)0.0004 (12)
C110.076 (2)0.0692 (18)0.0554 (17)−0.0099 (18)−0.0100 (16)−0.0047 (14)
C120.082 (2)0.0698 (18)0.0387 (14)0.0010 (19)−0.0040 (15)−0.0012 (13)
C130.0708 (19)0.0678 (18)0.084 (2)−0.0106 (19)0.0038 (18)−0.0001 (16)

Geometric parameters (Å, °)

N1—C41.384 (3)C3—H30.9300
N1—H1A0.8846C4—C51.390 (3)
N1—H1B0.8568C5—C61.373 (4)
N2—C81.348 (3)C5—H50.9300
N2—C121.354 (3)C6—H60.9300
N2—H2N0.9167C8—C91.405 (4)
N3—C81.334 (3)C9—C101.361 (4)
N3—H3A0.9287C9—H90.9300
N3—H3B0.9252C10—C111.408 (4)
O1—C71.249 (3)C10—C131.501 (4)
O2—C71.272 (3)C11—C121.343 (4)
C1—C61.385 (4)C11—H110.9300
C1—C21.390 (3)C12—H120.9300
C1—C71.494 (3)C13—H13A0.9600
C2—C31.381 (3)C13—H13B0.9600
C2—H20.9300C13—H13C0.9600
C3—C41.389 (3)
C4—N1—H1A115.4C1—C6—H6119.3
C4—N1—H1B117.1O1—C7—O2123.4 (2)
H1A—N1—H1B125.7O1—C7—C1119.6 (2)
C8—N2—C12121.1 (2)O2—C7—C1117.0 (2)
C8—N2—H2N119.7N3—C8—N2117.8 (2)
C12—N2—H2N119.2N3—C8—C9124.0 (2)
C8—N3—H3A114.1N2—C8—C9118.3 (2)
C8—N3—H3B118.1C10—C9—C8121.1 (2)
H3A—N3—H3B127.2C10—C9—H9119.4
C6—C1—C2117.3 (2)C8—C9—H9119.4
C6—C1—C7121.7 (2)C9—C10—C11118.3 (3)
C2—C1—C7121.0 (2)C9—C10—C13121.3 (2)
C3—C2—C1121.8 (2)C11—C10—C13120.4 (3)
C3—C2—H2119.1C12—C11—C10119.5 (3)
C1—C2—H2119.1C12—C11—H11120.3
C2—C3—C4120.2 (2)C10—C11—H11120.3
C2—C3—H3119.9C11—C12—N2121.7 (2)
C4—C3—H3119.9C11—C12—H12119.1
N1—C4—C3119.7 (2)N2—C12—H12119.1
N1—C4—C5122.2 (2)C10—C13—H13A109.5
C3—C4—C5118.1 (2)C10—C13—H13B109.5
C6—C5—C4121.1 (3)H13A—C13—H13B109.5
C6—C5—H5119.4C10—C13—H13C109.5
C4—C5—H5119.4H13A—C13—H13C109.5
C5—C6—C1121.4 (2)H13B—C13—H13C109.5
C5—C6—H6119.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.892.193.021 (3)157
N2—H2N···O20.921.692.606 (3)174
N3—H3A···O1ii0.931.952.844 (3)160
N3—H3B···O10.921.952.872 (3)174
C3—H3···O2i0.932.523.301 (3)142

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) x+1/2, −y+3/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2457).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Choudhury, S. R., Jana, A. D., Colacio, E., Lee, H. M., Mostafa, G. & Mukhopadhyay, S. (2007). Cryst. Growth Des.7, 212–214.
  • Chtioui, A., Benhamada, L. & Jouini, A. (2006). Mater. Res. Bull.40, 2243–2255.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Geiser, U., Gaura, R. M., Willett, R. D. & West, D. X. (1986). Inorg. Chem.25, 4203–4212.
  • Geiser, U. & Willett, R. D. (1984). J. Appl. Phys.55, 2407–2409.
  • Halvorson, K. E., Grigereit, T. & Willett, R. D. (1987). Inorg. Chem.26, 1716–1720.
  • Kaabi, K. & Khedhiri, L. (2004). Z. Kristallogr. New Cryst. Struct.219, 255–256.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography