PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1039.
Published online 2008 May 10. doi:  10.1107/S1600536808013238
PMCID: PMC2961431

2,3-Dibromo-1-(2,4-dichloro-5-fluoro­phen­yl)-3-phenyl­propan-1-one

Abstract

In the title compound, C15H9Br2Cl2FO, the dihedral angle between the two aromatic rings is 6.0 (1)°. The dibromo­ethane fragment of the propan-1-one unit is disordered over two positions, with occupancies of ca 0.83 and 0.17. The crystal structure is stabilized by inter­molecular C—H(...)O hydrogen bonds, C—H(...)π inter­actions, and Br(...)Cl [3.505 (2) and 3.576 (6) Å] and Cl(...)F [3.176 (2) Å] short contacts.

Related literature

For related literature, see: Agrinskaya et al. (1999 [triangle]); Patil et al. (2006 [triangle]); John Kiran et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the preparation, see: Shivarama Holla et al. 2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1039-scheme1.jpg

Experimental

Crystal data

  • C15H9Br2Cl2FO
  • M r = 454.94
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1039-efi1.jpg
  • a = 7.1232 (1) Å
  • b = 10.0757 (2) Å
  • c = 43.0262 (7) Å
  • V = 3088.04 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.60 mm−1
  • T = 100 (2) K
  • 0.40 × 0.24 × 0.14 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.211, T max = 0.508 (expected range = 0.190–0.457)
  • 26343 measured reflections
  • 5857 independent reflections
  • 3681 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.089
  • S = 0.98
  • 5857 reflections
  • 227 parameters
  • 60 restraints
  • H-atom parameters constrained
  • Δρmax = 0.77 e Å−3
  • Δρmin = −0.76 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808013238/ci2588sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013238/ci2588Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. HKF and IAR also thank the Malaysian Government and Universiti Sains Malaysia for the FRGS grant No. 203/PFIZIK/671064. SRJ thanks the Universiti Sains Malaysia for a post-doctoral research fellowship. This work was also supported by the Department of Science and Technology (DST), Government of India, grant No. SR/S2/LOP-17/2006.

supplementary crystallographic information

Comment

Derivatives of chalcone exhibit nonlinear optical (NLO) properties (Agrinskaya et al., 1999; Patil et al., 2006; John Kiran et al., 2007). We report here the crystal structure of the title compound (Fig 1), which crystallizes in a centrosymmetric space group and this precludes the presence of second-order NLO properties.

Bond lengths and angles in the title molecule have normal values (Allen et al., 1987). The dihedral angle between the benzene rings is 6.0 (1)°. The dibromoethane fragment of the propan-1-one unit is diordered over two positions.

The crystal packing is (Fig.2) stabilized by intermolecular C—H···O and weak C—H···π interactions involving the C1–C6 benzene ring (centroid Cg1). In addition, Br2···Cl2(-1+x,y,z) [3.505 (2) Å], Br1A···Cl2(-1+x,y,z) [3.576 (6) Å] and Cl1···F1(1-x,1-y,-z) [3.176 (2) Å] short contacts are oberved in the crystal structure.

Experimental

1-(2,4-Dichloro-5-fluorophenyl)-3-phenylprop-2-en-1-one (1 mmol) was prepared by a literature procedure (Shivarama Holla et al., 2006). To a solution of 1-(2,4-dichloro-5-fluorophenyl)-3-phenylprop-2-en-1-one) (1 mmol) in chloroform (25 ml), bromine (1 mmol) was added slowly with stirring. After the completion of addition the reaction mixture was stirred for 24 h. Excess chloroform was distilled off and crude solid was filtered and dried. The precipitated compound was recrystallized from acetone.

Refinement

The dibromoethane linkage is disordered over two positions with refined occupancies of 0.834 (6):0.166 (6). The C-Br distances were restrained to be equal, and Csp2-Csp3 and Csp3-Csp3 distances involving the disordered atoms were restrained to 1.50 (1) and 1.54 (1) Å, respectively. The Uij components of disordered atoms were restrained to approximate isotropic behaviour. H atoms were positioned geometrically [C—H = 0.95 or 1.00 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Only the major disorder component is shown.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis. Short intra- and intermolecular contacts and hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.

Crystal data

C15H9Br2Cl2FOF000 = 1760
Mr = 454.94Dx = 1.957 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4782 reflections
a = 7.1232 (1) Åθ = 2.8–28.1º
b = 10.0757 (2) ŵ = 5.60 mm1
c = 43.0262 (7) ÅT = 100 (2) K
V = 3088.04 (9) Å3Block, colourless
Z = 80.40 × 0.24 × 0.14 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5857 independent reflections
Radiation source: fine-focus sealed tube3681 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.056
T = 100(2) Kθmax = 33.2º
[var phi] and ω scansθmin = 1.0º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −10→8
Tmin = 0.211, Tmax = 0.508k = −15→15
26343 measured reflectionsl = −52→66

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.089  w = 1/[σ2(Fo2) + (0.0309P)2 + 2.3603P] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
5857 reflectionsΔρmax = 0.77 e Å3
227 parametersΔρmin = −0.76 e Å3
60 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low–temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cl10.58123 (10)0.31692 (7)−0.003788 (15)0.02739 (16)
Cl20.62659 (10)−0.10513 (7)0.070833 (16)0.02701 (16)
F10.3512 (3)0.42768 (15)0.04559 (4)0.0314 (4)
O10.3888 (3)−0.05963 (18)0.12256 (4)0.0211 (4)
C10.0038 (4)0.0604 (3)0.21381 (6)0.0229 (6)
H10.0475−0.02860.21510.028*
C2−0.0915 (4)0.1152 (3)0.23859 (6)0.0243 (6)
H2−0.11470.06350.25670.029*
C3−0.1533 (4)0.2449 (3)0.23723 (7)0.0273 (6)
H3−0.21970.28220.25430.033*
C4−0.1181 (4)0.3209 (3)0.21087 (7)0.0260 (6)
H4−0.15810.41070.21000.031*
C5−0.0250 (5)0.2651 (3)0.18597 (7)0.0290 (7)
H5−0.00250.31660.16790.035*
C60.0365 (4)0.1337 (3)0.18715 (6)0.0265 (6)
C90.3635 (4)0.0567 (3)0.11688 (6)0.0189 (5)
C100.4255 (4)0.1189 (2)0.08738 (6)0.0176 (5)
C110.3646 (4)0.2472 (3)0.07982 (6)0.0222 (6)
H110.28830.29490.09410.027*
C120.4138 (4)0.3047 (3)0.05211 (6)0.0216 (6)
C130.5258 (4)0.2405 (3)0.03074 (6)0.0196 (5)
C140.5896 (4)0.1134 (3)0.03752 (6)0.0203 (5)
H140.66730.06770.02310.024*
C150.5397 (4)0.0535 (2)0.06529 (6)0.0185 (5)
Br10.4779 (3)0.1813 (3)0.17334 (5)0.0279 (4)0.834 (6)
Br2−0.06956 (14)0.02708 (17)0.12693 (3)0.0296 (2)0.834 (6)
C70.1226 (5)0.0653 (3)0.15969 (7)0.0194 (8)0.834 (6)
H70.1772−0.02090.16680.023*0.834 (6)
C80.2737 (5)0.1420 (4)0.14272 (7)0.0190 (8)0.834 (6)
H80.22160.22610.13390.023*0.834 (6)
Br1A−0.0440 (7)0.0638 (6)0.11951 (14)0.0265 (8)0.166 (6)
Br2A0.4743 (16)0.1862 (16)0.1704 (2)0.0222 (16)0.166 (6)
C7A0.2193 (14)0.0999 (16)0.1700 (3)0.028 (5)0.166 (6)
H7A0.24050.00250.17280.033*0.166 (6)
C8A0.2088 (11)0.1248 (14)0.1348 (3)0.015 (4)0.166 (6)
H8A0.21900.22250.13110.018*0.166 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0264 (4)0.0359 (4)0.0198 (3)0.0014 (3)0.0055 (3)0.0042 (3)
Cl20.0290 (4)0.0221 (3)0.0300 (3)0.0083 (3)0.0061 (3)−0.0018 (3)
F10.0442 (11)0.0200 (8)0.0302 (9)0.0078 (8)0.0112 (8)0.0069 (7)
O10.0246 (11)0.0173 (9)0.0214 (9)0.0019 (8)−0.0011 (8)−0.0018 (7)
C10.0237 (15)0.0222 (13)0.0229 (13)−0.0004 (12)0.0020 (11)0.0000 (10)
C20.0224 (15)0.0293 (15)0.0212 (13)−0.0056 (12)0.0026 (11)0.0010 (11)
C30.0224 (16)0.0323 (16)0.0271 (15)−0.0049 (13)0.0061 (12)−0.0067 (12)
C40.0217 (15)0.0226 (14)0.0338 (15)0.0022 (12)0.0043 (12)−0.0038 (12)
C50.0381 (19)0.0219 (14)0.0270 (15)0.0049 (13)0.0102 (13)0.0045 (11)
C60.0322 (18)0.0248 (14)0.0226 (13)0.0052 (13)0.0082 (12)0.0013 (11)
C90.0190 (14)0.0173 (12)0.0203 (13)−0.0010 (11)0.0019 (10)−0.0016 (10)
C100.0183 (13)0.0148 (12)0.0198 (12)−0.0012 (10)0.0021 (10)−0.0022 (9)
C110.0250 (15)0.0176 (13)0.0239 (13)0.0009 (12)0.0051 (11)−0.0021 (10)
C120.0237 (14)0.0165 (12)0.0245 (13)−0.0004 (11)0.0011 (11)0.0019 (10)
C130.0182 (14)0.0249 (14)0.0158 (12)−0.0051 (11)0.0010 (10)−0.0012 (10)
C140.0171 (13)0.0245 (14)0.0192 (12)0.0008 (11)0.0025 (10)−0.0054 (10)
C150.0144 (13)0.0165 (12)0.0244 (13)−0.0008 (10)−0.0013 (10)−0.0034 (10)
Br10.0181 (5)0.0296 (5)0.0359 (9)−0.0023 (4)−0.0012 (5)−0.0105 (7)
Br20.0212 (3)0.0379 (5)0.0296 (4)−0.0013 (3)−0.0041 (3)−0.0111 (3)
C70.0208 (18)0.0182 (15)0.0191 (15)0.0007 (13)−0.0027 (13)−0.0016 (12)
C80.022 (2)0.0175 (16)0.0173 (17)−0.0011 (15)−0.0004 (15)−0.0024 (12)
Br1A0.0242 (14)0.0302 (17)0.0252 (16)−0.0071 (12)−0.0074 (11)0.0019 (12)
Br2A0.030 (3)0.031 (3)0.0061 (13)−0.008 (2)0.0041 (14)−0.0099 (13)
C7A0.027 (8)0.021 (7)0.035 (8)−0.010 (6)−0.010 (6)0.006 (6)
C8A0.015 (7)0.014 (7)0.016 (7)−0.005 (6)−0.007 (5)0.003 (5)

Geometric parameters (Å, °)

Cl1—C131.719 (3)C9—C81.544 (4)
Cl2—C151.731 (3)C10—C111.402 (4)
F1—C121.346 (3)C10—C151.414 (4)
O1—C91.211 (3)C11—C121.371 (4)
C1—C21.380 (4)C11—H110.95
C1—C61.384 (4)C12—C131.379 (4)
C1—H10.95C13—C141.390 (4)
C2—C31.380 (4)C14—C151.385 (4)
C2—H20.95C14—H140.95
C3—C41.391 (4)Br1—C82.002 (4)
C3—H30.95Br2—C72.002 (3)
C4—C51.380 (4)C7—C81.513 (4)
C4—H40.95C7—H71.00
C5—C61.395 (4)C8—H81.00
C5—H50.95Br1A—C8A2.013 (8)
C6—C71.499 (4)Br2A—C7A2.014 (8)
C6—C7A1.536 (9)C7A—C8A1.535 (9)
C9—C101.483 (4)C7A—H7A1.00
C9—C8A1.509 (9)C8A—H8A1.00
C2—C1—C6120.6 (3)C12—C13—C14118.8 (2)
C2—C1—H1119.7C12—C13—Cl1119.9 (2)
C6—C1—H1119.7C14—C13—Cl1121.3 (2)
C1—C2—C3120.2 (3)C15—C14—C13119.9 (2)
C1—C2—H2119.9C15—C14—H14120.0
C3—C2—H2119.9C13—C14—H14120.0
C2—C3—C4119.9 (3)C14—C15—C10121.6 (2)
C2—C3—H3120.1C14—C15—Cl2115.5 (2)
C4—C3—H3120.1C10—C15—Cl2122.9 (2)
C5—C4—C3119.7 (3)C6—C7—C8115.9 (3)
C5—C4—H4120.2C6—C7—Br2111.3 (2)
C3—C4—H4120.2C8—C7—Br2104.2 (2)
C4—C5—C6120.6 (3)C6—C7—H7108.4
C4—C5—H5119.7C8—C7—H7108.4
C6—C5—H5119.7Br2—C7—H7108.4
C1—C6—C5118.9 (3)C7—C8—C9110.9 (3)
C1—C6—C7118.5 (3)C7—C8—Br1107.5 (2)
C5—C6—C7122.4 (3)C9—C8—Br1106.5 (2)
C1—C6—C7A115.1 (6)C7—C8—H8110.6
C5—C6—C7A117.3 (6)C9—C8—H8110.6
O1—C9—C10122.5 (2)Br1—C8—H8110.6
O1—C9—C8A116.5 (6)C8A—C7A—C6113.4 (8)
C10—C9—C8A117.6 (6)C8A—C7A—Br2A89.1 (7)
O1—C9—C8117.1 (2)C6—C7A—Br2A131.6 (9)
C10—C9—C8120.3 (2)C8A—C7A—H7A106.7
C11—C10—C15116.9 (2)C6—C7A—H7A106.7
C11—C10—C9119.7 (2)Br2A—C7A—H7A106.7
C15—C10—C9123.4 (2)C9—C8A—C7A113.2 (8)
C12—C11—C10120.8 (2)C9—C8A—Br1A110.3 (6)
C12—C11—H11119.6C7A—C8A—Br1A108.4 (8)
C10—C11—H11119.6C9—C8A—H8A108.3
F1—C12—C11119.0 (2)C7A—C8A—H8A108.3
F1—C12—C13119.0 (2)Br1A—C8A—H8A108.3
C11—C12—C13122.0 (2)
C6—C1—C2—C3−0.9 (4)C1—C6—C7—C8−137.6 (3)
C1—C2—C3—C4−0.5 (4)C5—C6—C7—C847.5 (4)
C2—C3—C4—C51.3 (4)C7A—C6—C7—C8−44.3 (10)
C3—C4—C5—C6−0.9 (5)C1—C6—C7—Br2103.6 (3)
C2—C1—C6—C51.4 (5)C5—C6—C7—Br2−71.2 (4)
C2—C1—C6—C7−173.7 (3)C7A—C6—C7—Br2−163.1 (11)
C2—C1—C6—C7A148.2 (6)C6—C7—C8—C9174.9 (3)
C4—C5—C6—C1−0.5 (5)Br2—C7—C8—C9−62.5 (3)
C4—C5—C6—C7174.4 (3)C6—C7—C8—Br158.9 (3)
C4—C5—C6—C7A−146.6 (6)Br2—C7—C8—Br1−178.49 (17)
O1—C9—C10—C11169.1 (3)O1—C9—C8—C7−38.7 (4)
C8A—C9—C10—C1110.9 (5)C10—C9—C8—C7145.0 (3)
C8—C9—C10—C11−14.8 (4)C8A—C9—C8—C755.5 (16)
O1—C9—C10—C15−8.5 (4)O1—C9—C8—Br177.9 (3)
C8A—C9—C10—C15−166.7 (4)C10—C9—C8—Br1−98.3 (3)
C8—C9—C10—C15167.6 (3)C8A—C9—C8—Br1172.1 (18)
C15—C10—C11—C120.4 (4)C1—C6—C7A—C8A151.0 (9)
C9—C10—C11—C12−177.3 (3)C5—C6—C7A—C8A−61.6 (12)
C10—C11—C12—F1179.5 (2)C7—C6—C7A—C8A46.7 (9)
C10—C11—C12—C13−0.7 (4)C1—C6—C7A—Br2A−97.9 (12)
F1—C12—C13—C14−179.8 (2)C5—C6—C7A—Br2A49.5 (13)
C11—C12—C13—C140.3 (4)C7—C6—C7A—Br2A157.8 (19)
F1—C12—C13—Cl1−0.7 (4)O1—C9—C8A—C7A49.1 (10)
C11—C12—C13—Cl1179.4 (2)C10—C9—C8A—C7A−151.4 (8)
C12—C13—C14—C150.3 (4)C8—C9—C8A—C7A−48.3 (12)
Cl1—C13—C14—C15−178.8 (2)O1—C9—C8A—Br1A−72.6 (8)
C13—C14—C15—C10−0.5 (4)C10—C9—C8A—Br1A86.9 (8)
C13—C14—C15—Cl2179.5 (2)C8—C9—C8A—Br1A−170 (2)
C11—C10—C15—C140.2 (4)C6—C7A—C8A—C9−163.6 (8)
C9—C10—C15—C14177.8 (3)Br2A—C7A—C8A—C960.7 (10)
C11—C10—C15—Cl2−179.9 (2)C6—C7A—C8A—Br1A−40.8 (13)
C9—C10—C15—Cl2−2.2 (4)Br2A—C7A—C8A—Br1A−176.6 (8)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.952.453.392 (4)170
C8—H8···O1i1.002.353.336 (4)169
C11—H11···O1i0.952.293.229 (3)170
C3—H3···Cg1ii0.952.963.652 (3)131

Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x−3/2, y, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2588).

References

  • Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • John Kiran, A., Mithun, A., Shivarama Holla, B., Shashikala, H. D., Umesh, G. & Chandrasekharan, K. (2007). Opt. Commun.269, 235–240.
  • Patil, P. S., Dharmaprakash, S. M., Fun, H.–K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shivarama Holla, B., Sooryanarayana Rao, B., Sarojini, B. K., Akberali, P. M. & Suchetha Kumari, N. (2006). Eur. J. Med. Chem.41, 657–663. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography