PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1138.
Published online 2008 May 21. doi:  10.1107/S1600536808015067
PMCID: PMC2961426

Cholic acid–quinoxaline (2/1)

Abstract

In the title inclusion compound, 2C24H40O5·C8H6N2, the unit cell contains two mol­ecules of cholic acid (3α,7α,12α-trihydr­oxy-5β-cholan-24-oic acid) and one mol­ecule of quinoxaline which implies disorder of the quinoxaline in the space group P21. The amphiphilic mol­ecules of cholic acid assemble, in an anti­parallel arrangement, via O—H(...)O hydrogen bonds, into typical corrugated host bilayers which are lipophilic on the outside and lipophobic on the inside. The host framework belongs to the so called α-trans subtype. The quinoxaline mol­ecules are accommodated in lipophilic channels formed between neighboring bilayers with only van der Waals inter­actions between host and guest. There is a crystallographic twofold screw axis directed along an empty channel in the host framework; however, neighboring guests in any one channel are related by a unit-cell translation along the b axis. Thus, the overall structure is a 1:1 superposition of two such channels related by the crystallographic twofold screw axis.

Related literature

For structural information on cholic acid inclusion compounds, see: Miyata & Sada (1996 [triangle]); Nakano et al. (2001 [triangle], 2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1138-scheme1.jpg

Experimental

Crystal data

  • 2C24H40O5·C8H6N2
  • M r = 947.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1138-efi1.jpg
  • a = 12.2799 (5) Å
  • b = 7.8968 (3) Å
  • c = 14.2831 (5) Å
  • β = 104.653 (4)°
  • V = 1340.01 (9) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 130 (2) K
  • 0.6 × 0.2 × 0.09 mm

Data collection

  • Kuma KM-4-CCD κ-geometry diffractometer
  • Absorption correction: multi-scan (SCALE3 ABSPACK scaling algorithm; Oxford Diffraction, 2007 [triangle]) T min = 0.783, T max = 1.000 (expected range = 0.777–0.993)
  • 9593 measured reflections
  • 2929 independent reflections
  • 2548 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.102
  • S = 1.07
  • 2929 reflections
  • 353 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015067/fl2200sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015067/fl2200Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Cholic acid forms inclusion compounds with a large variety of guest molecules (Miyata & Sada, 1996). The host framework is strongly dependent on the guest but, in most cases, it is constructed from cholic acid bilayers which are lipophilic on the outside and lipophobic on the inside (Nakano et al., 2001, 2006). The type of the host framework and the host:guest ratio are strongly dependent on the volume and shape of the guest (Nakano et al., 2001). In the case of bilayers with an antiparallel arrangement of host molecules, four framework subtypes are generally recognized: α-gauche, α-trans, β-gauche and β-trans (Miyata & Sada, 1996) based on the conformation of the steroidal side chain (gauche/trans) and the stacking mode of the bilayers (α/β). Among numerous guest molecules that have cocrystallized with cholic acid no larger arenes or aromatic azaheterocycles have been reported. This is probably due to the problems with accommodating large molecules of fixed geometry within corrugated host channels. Quinoxaline easily cocrystallized with cholic acid, because as a low melting solid it could be used for cocrystallization without the need for any additional solvent.

In (I) ( Fig. 1), the host molecules are arranged in typical antiparallel bilayers and the framework can be classified as α-trans (Fig. 2). Four molecules of the host generate a cyclic motif of O—H···O hydrogen bonds (Fig. 3, Table 1) that assembles molecules into a two-dimensional polymeric structure (host bilayer). The hydrogen bonds are not completely buried on the inside of the bilayer as they partially line the grooves on the corrugated bilayer surface. The quinoxaline molecules are accommodated in lipophilic channels formed between neighboring bilayers and there are only van der Waals interactions between host and guest. The unit cell contains two molecules of the bile acid and one molecule of quinoxaline. In P21 this implies disorder of the guest and this is the case for (I): the crystallographic symmetry of the empty channel is higher than the symmetry of the guest arrangement within the channel. Neighbouring guests are related by translation along b [7.8968 (3) Å] and not by the crystallographic 21 axis operating along the channel (Fig. 4). There is no long-distance order in the channels because no reflections in addition to the Bragg reflections were detected. Thus, the model of the crystal structure of the title compound reveals superposition of two channels related by the crystallographic twofold screw axis ( Fig. 4).

Experimental

The title compound was obtained by dissolving cholic acid (0.1 g, 0.24 mmol) in melted quinoxaline (0.7 g, 5.38 mmol) and evaporation of the excess of quinoxaline at 60°C for two days. The resulting colorless plates were stable in air.

Refinement

In the absence of significant anomalous scattering effects, Friedel pairs were averaged. The absolute configuration of cholic acid was assigned from the known configuration of the starting material. All H atoms were located in electron-density difference maps. For refinement all H atoms were placed at calculated positions, with C—H = 0.96–0.98 Å and O—H = 0.82 Å, and were refined as riding on their carrier atoms with Uĩso(H) = 1.2Ueq(C, O). No restraints were imposed on geometry of the disordered quinoxaline molecules (occupancy factor 1/2).

Figures

Fig. 1.
: The molecular structure of the title compound with displacement ellipsoids shown at the 50% probability level. H atoms bound to C atoms are omitted for clarity.
Fig. 2.
: Crystal packing viewed down the b axis. Hydrogen bonds are shown with dashed lines.
Fig. 3.
: Cyclic motif of O—H···O hydrogen bonds generating two-dimensional network of the host molecules.
Fig. 4.
Arrangement of the guest molecules within the channels. In the channels A and B the molecules are related by translation operation. The channel C shows superposition of the channels A and B (related by the twofold screw axis), as seen from the electron-density ...

Crystal data

2C24H40O5·C8H6N2F000 = 516
Mr = 947.27Dx = 1.174 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 6598 reflections
a = 12.2799 (5) Åθ = 2.0–27.7º
b = 7.8968 (3) ŵ = 0.08 mm1
c = 14.2831 (5) ÅT = 130 (2) K
β = 104.653 (4)ºPlate, colorless
V = 1340.01 (9) Å30.6 × 0.2 × 0.09 mm
Z = 1

Data collection

Kuma KM-4-CCD κ-geometry diffractometer2929 independent reflections
Radiation source: fine-focus sealed tube2548 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.016
T = 130(2) Kθmax = 26.4º
ω scansθmin = 4.3º
Absorption correction: multi-scan(SCALE3 ABSPACK scaling algorithm; Oxford Diffraction, 2007)h = −14→15
Tmin = 0.783, Tmax = 1.000k = −7→9
9593 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.102  w = 1/[σ2(Fo2) + (0.0726P)2] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.004
2929 reflectionsΔρmax = 0.23 e Å3
353 parametersΔρmin = −0.17 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.59222 (14)0.4911 (2)1.10590 (10)0.0314 (4)
H1O0.62420.42361.14750.038*
O20.42660 (12)0.2628 (2)0.79071 (10)0.0258 (3)
H2O0.43390.17020.81760.031*
O30.32033 (13)0.8075 (2)0.72265 (10)0.0274 (3)
H3O0.27250.88130.70560.033*
O4−0.16441 (14)0.5786 (2)0.30332 (13)0.0426 (5)
O5−0.20929 (13)0.8331 (2)0.23696 (11)0.0323 (4)
H5O−0.27380.80000.23200.039*
C10.69475 (18)0.7038 (3)0.90818 (16)0.0274 (5)
H1A0.77530.69380.93550.033*
H1B0.68020.81670.88120.033*
C20.63568 (19)0.6848 (3)0.98942 (15)0.0255 (5)
H2A0.66370.76981.03860.031*
H2B0.55550.70260.96400.031*
C30.65639 (19)0.5100 (3)1.03418 (15)0.0275 (5)
H3A0.73670.49571.06510.033*
C40.61870 (19)0.3768 (3)0.95714 (15)0.0260 (5)
H4A0.53760.38320.93290.031*
H4B0.63680.26600.98630.031*
C50.67282 (18)0.3938 (3)0.87164 (15)0.0254 (5)
H5A0.75380.37470.89720.030*
C60.62925 (18)0.2534 (3)0.79734 (15)0.0270 (5)
H6A0.67910.24490.75460.032*
H6B0.63240.14650.83130.032*
C70.50925 (17)0.2804 (3)0.73578 (14)0.0236 (4)
H7A0.49350.19630.68360.028*
C80.49507 (17)0.4575 (3)0.69055 (14)0.0208 (4)
H8A0.54160.46330.64410.025*
C90.53446 (17)0.5997 (3)0.76600 (14)0.0209 (4)
H9A0.48720.59320.81190.025*
C100.65901 (17)0.5734 (3)0.82549 (15)0.0235 (5)
C110.51251 (17)0.7736 (3)0.71581 (14)0.0236 (4)
H11A0.53150.86130.76480.028*
H11B0.56250.78620.67340.028*
C120.39105 (16)0.8019 (3)0.65640 (14)0.0221 (4)
H12A0.38650.91090.62280.027*
C130.35326 (16)0.6593 (3)0.58027 (14)0.0193 (4)
C140.37382 (17)0.4900 (3)0.63560 (14)0.0192 (4)
H14A0.33010.49500.68420.023*
C150.31647 (18)0.3578 (3)0.56138 (15)0.0245 (5)
H15A0.29530.25880.59300.029*
H15B0.36540.32310.52110.029*
C160.21215 (18)0.4509 (3)0.50161 (15)0.0251 (5)
H16A0.14450.40490.51510.030*
H16B0.20670.43810.43300.030*
C170.22533 (16)0.6422 (3)0.53071 (14)0.0194 (4)
H17A0.18490.66010.58090.023*
C180.41975 (17)0.6735 (3)0.50303 (15)0.0249 (5)
H18A0.49730.64630.53130.030*
H18B0.41420.78700.47820.030*
H18C0.38930.59600.45120.030*
C190.74162 (19)0.5929 (4)0.76107 (17)0.0334 (5)
H19A0.81570.55960.79680.040*
H19B0.74300.70900.74140.040*
H19C0.71770.52240.70490.040*
C200.17040 (17)0.7576 (3)0.44491 (13)0.0224 (4)
H20A0.20590.73440.39200.027*
C210.18378 (19)0.9459 (3)0.46903 (16)0.0287 (5)
H21A0.26210.97560.48420.034*
H21B0.15410.96980.52370.034*
H21C0.14351.01090.41440.034*
C220.04541 (17)0.7089 (3)0.41068 (15)0.0263 (5)
H22A0.04030.58660.40470.032*
H22B0.00850.74180.46040.032*
C23−0.01830 (19)0.7862 (4)0.31591 (17)0.0382 (6)
H23A−0.01990.90830.32270.046*
H23B0.02050.76030.26630.046*
C24−0.1376 (2)0.7201 (3)0.28483 (15)0.0300 (5)
N1A−0.0432 (7)1.0289 (10)0.9084 (5)0.083 (2)0.50
C2A−0.0825 (14)1.0781 (18)0.9829 (10)0.080 (2)0.50
H2Q−0.10061.19470.99060.095*0.50
C3A−0.0749 (6)0.9642 (11)1.0630 (5)0.0547 (16)0.50
H3Q−0.11670.98971.10970.066*0.50
N4A−0.0260 (5)0.8179 (8)1.0700 (4)0.0596 (14)0.50
C5A0.0703 (14)0.6025 (17)0.9949 (11)0.080 (2)0.50
H5Q0.07780.52611.04850.095*0.50
C6A0.1128 (8)0.5634 (13)0.9238 (6)0.076 (2)0.50
H6Q0.14810.45590.92040.091*0.50
C7A0.1092 (5)0.6676 (10)0.8484 (5)0.0579 (17)0.50
H7Q0.14460.63500.79850.070*0.50
C8A0.0569 (6)0.8161 (11)0.8407 (5)0.066 (2)0.50
H8Q0.05340.88640.78520.079*0.50
C9A0.0065 (5)0.8732 (9)0.9145 (5)0.0532 (16)0.50
C10A0.0145 (4)0.7716 (9)0.9960 (5)0.0493 (14)0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0475 (10)0.0242 (9)0.0197 (7)0.0043 (7)0.0034 (7)0.0018 (6)
O20.0272 (7)0.0232 (8)0.0249 (7)0.0007 (7)0.0030 (6)0.0045 (6)
O30.0317 (8)0.0247 (8)0.0242 (7)0.0083 (7)0.0038 (6)−0.0033 (6)
O40.0346 (9)0.0363 (11)0.0491 (10)−0.0068 (8)−0.0037 (8)0.0064 (8)
O50.0261 (8)0.0365 (10)0.0328 (8)0.0001 (7)0.0049 (7)0.0009 (7)
C10.0243 (11)0.0257 (11)0.0270 (11)−0.0035 (9)−0.0029 (9)0.0000 (9)
C20.0296 (11)0.0238 (12)0.0191 (10)0.0010 (9)−0.0012 (8)−0.0034 (8)
C30.0302 (11)0.0268 (12)0.0212 (10)0.0021 (9)−0.0011 (9)−0.0029 (9)
C40.0310 (11)0.0209 (11)0.0228 (10)0.0039 (9)0.0008 (8)0.0010 (8)
C50.0204 (10)0.0278 (12)0.0250 (11)0.0053 (9)0.0005 (8)−0.0015 (9)
C60.0289 (11)0.0261 (12)0.0249 (10)0.0067 (10)0.0049 (8)−0.0003 (9)
C70.0276 (10)0.0206 (11)0.0212 (9)0.0013 (9)0.0034 (8)−0.0016 (8)
C80.0239 (10)0.0185 (10)0.0195 (9)0.0008 (9)0.0045 (8)−0.0017 (8)
C90.0202 (9)0.0204 (10)0.0207 (9)−0.0017 (8)0.0025 (8)−0.0025 (8)
C100.0218 (10)0.0256 (12)0.0217 (10)0.0006 (9)0.0027 (8)−0.0006 (9)
C110.0248 (10)0.0221 (11)0.0208 (9)−0.0031 (9)−0.0003 (8)0.0001 (8)
C120.0249 (10)0.0175 (11)0.0216 (9)−0.0008 (9)0.0015 (8)0.0006 (8)
C130.0213 (10)0.0188 (11)0.0171 (9)−0.0018 (8)0.0034 (8)0.0004 (8)
C140.0216 (10)0.0163 (10)0.0196 (9)−0.0027 (8)0.0048 (8)0.0003 (8)
C150.0279 (10)0.0219 (11)0.0228 (10)−0.0020 (9)0.0049 (8)−0.0035 (8)
C160.0251 (11)0.0231 (11)0.0246 (10)−0.0043 (9)0.0016 (8)−0.0019 (9)
C170.0187 (10)0.0212 (10)0.0187 (9)−0.0023 (8)0.0055 (8)−0.0015 (8)
C180.0220 (10)0.0289 (12)0.0241 (10)−0.0022 (9)0.0063 (8)0.0036 (9)
C190.0232 (10)0.0425 (14)0.0339 (12)−0.0033 (11)0.0064 (9)0.0007 (11)
C200.0222 (10)0.0271 (11)0.0176 (9)−0.0004 (9)0.0047 (8)0.0018 (8)
C210.0306 (12)0.0275 (12)0.0248 (11)0.0028 (10)0.0012 (9)0.0030 (9)
C220.0234 (10)0.0311 (12)0.0228 (10)−0.0009 (9)0.0027 (8)0.0034 (9)
C230.0294 (12)0.0474 (16)0.0321 (11)−0.0058 (12)−0.0028 (9)0.0134 (11)
C240.0309 (12)0.0353 (14)0.0209 (10)−0.0039 (10)0.0015 (9)0.0003 (9)
N1A0.114 (5)0.067 (4)0.072 (4)0.017 (4)0.033 (4)0.023 (3)
C2A0.099 (4)0.080 (4)0.053 (5)0.049 (5)0.007 (4)0.002 (3)
C3A0.052 (4)0.064 (5)0.047 (3)0.006 (4)0.009 (3)0.002 (3)
N4A0.060 (3)0.062 (4)0.048 (3)0.003 (3)−0.001 (2)−0.008 (3)
C5A0.099 (4)0.080 (4)0.053 (5)0.049 (5)0.007 (4)0.002 (3)
C6A0.073 (5)0.063 (6)0.081 (6)0.021 (5)−0.003 (5)−0.027 (5)
C7A0.051 (4)0.055 (4)0.066 (4)−0.005 (3)0.012 (3)−0.024 (4)
C8A0.064 (4)0.064 (5)0.071 (4)−0.035 (4)0.019 (3)−0.007 (4)
C9A0.046 (3)0.045 (4)0.070 (4)−0.012 (3)0.018 (3)−0.013 (3)
C10A0.032 (3)0.050 (4)0.058 (3)−0.001 (3)−0.004 (2)−0.007 (3)

Geometric parameters (Å, °)

O1—C31.449 (3)C14—H14A0.9800
O1—H1O0.8200C15—C161.535 (3)
O2—C71.438 (2)C15—H15A0.9700
O2—H2O0.8200C15—H15B0.9700
O3—C121.438 (2)C16—C171.564 (3)
O3—H3O0.8200C16—H16A0.9700
O4—C241.213 (3)C16—H16B0.9700
O5—C241.317 (3)C17—C201.539 (3)
O5—H5O0.8200C17—H17A0.9800
C1—C21.523 (3)C18—H18A0.9600
C1—C101.545 (3)C18—H18B0.9600
C1—H1A0.9700C18—H18C0.9600
C1—H1B0.9700C19—H19A0.9600
C2—C31.515 (3)C19—H19B0.9600
C2—H2A0.9700C19—H19C0.9600
C2—H2B0.9700C20—C211.526 (3)
C3—C41.508 (3)C20—C221.537 (3)
C3—H3A0.9800C20—H20A0.9800
C4—C51.537 (3)C21—H21A0.9600
C4—H4A0.9700C21—H21B0.9600
C4—H4B0.9700C21—H21C0.9600
C5—C61.534 (3)C22—C231.510 (3)
C5—C101.555 (3)C22—H22A0.9700
C5—H5A0.9800C22—H22B0.9700
C6—C71.528 (3)C23—C241.512 (3)
C6—H6A0.9700C23—H23A0.9700
C6—H6B0.9700C23—H23B0.9700
C7—C81.532 (3)N1A—C2A1.332 (15)
C7—H7A0.9800N1A—C9A1.366 (10)
C8—C141.519 (3)C2A—C3A1.440 (19)
C8—C91.547 (3)C2A—H2Q0.9600
C8—H8A0.9800C3A—N4A1.294 (11)
C9—C111.541 (3)C3A—H3Q0.9600
C9—C101.564 (3)N4A—C10A1.329 (8)
C9—H9A0.9800C5A—C6A1.292 (18)
C10—C191.540 (3)C5A—C10A1.503 (13)
C11—C121.534 (3)C5A—H5Q0.9600
C11—H11A0.9700C6A—C7A1.346 (13)
C11—H11B0.9700C6A—H6Q0.9600
C12—C131.552 (3)C7A—C8A1.327 (11)
C12—H12A0.9800C7A—H7Q0.9600
C13—C181.534 (3)C8A—C9A1.424 (10)
C13—C141.541 (3)C8A—H8Q0.9600
C13—C171.557 (3)C9A—C10A1.397 (10)
C14—C151.527 (3)
C3—O1—H1O109.5C15—C14—H14A106.3
C7—O2—H2O109.5C13—C14—H14A106.3
C12—O3—H3O109.5C14—C15—C16103.41 (17)
C24—O5—H5O109.5C14—C15—H15A111.0
C2—C1—C10114.76 (18)C16—C15—H15A111.2
C2—C1—H1A108.6C14—C15—H15B111.0
C10—C1—H1A108.5C16—C15—H15B111.1
C2—C1—H1B108.5H15A—C15—H15B109.1
C10—C1—H1B108.7C15—C16—C17107.41 (17)
H1A—C1—H1B107.5C15—C16—H16A110.2
C3—C2—C1110.47 (18)C17—C16—H16A110.2
C3—C2—H2A109.5C15—C16—H16B110.2
C1—C2—H2A109.5C17—C16—H16B110.2
C3—C2—H2B109.6H16A—C16—H16B108.5
C1—C2—H2B109.6C20—C17—C13119.94 (16)
H2A—C2—H2B108.1C20—C17—C16111.41 (16)
O1—C3—C4108.80 (18)C13—C17—C16103.25 (16)
O1—C3—C2109.21 (18)C20—C17—H17A107.2
C4—C3—C2109.87 (16)C13—C17—H17A107.2
O1—C3—H3A109.6C16—C17—H17A107.2
C4—C3—H3A109.6C13—C18—H18A109.5
C2—C3—H3A109.7C13—C18—H18B109.5
C3—C4—C5113.84 (18)H18A—C18—H18B109.5
C3—C4—H4A108.8C13—C18—H18C109.5
C5—C4—H4A108.8H18A—C18—H18C109.5
C3—C4—H4B108.8H18B—C18—H18C109.5
C5—C4—H4B108.8C10—C19—H19A109.5
H4A—C4—H4B107.7C10—C19—H19B109.5
C6—C5—C4109.95 (18)H19A—C19—H19B109.5
C6—C5—C10112.59 (17)C10—C19—H19C109.5
C4—C5—C10113.20 (17)H19A—C19—H19C109.5
C6—C5—H5A106.8H19B—C19—H19C109.5
C4—C5—H5A107.0C21—C20—C22110.95 (19)
C10—C5—H5A106.9C21—C20—C17113.38 (16)
C7—C6—C5114.47 (18)C22—C20—C17107.83 (17)
C7—C6—H6A108.6C21—C20—H20A108.2
C5—C6—H6A108.7C22—C20—H20A108.1
C7—C6—H6B108.7C17—C20—H20A108.2
C5—C6—H6B108.7C20—C21—H21A109.5
H6A—C6—H6B107.6C20—C21—H21B109.5
O2—C7—C6112.56 (16)H21A—C21—H21B109.5
O2—C7—C8107.32 (16)C20—C21—H21C109.5
C6—C7—C8111.10 (18)H21A—C21—H21C109.5
O2—C7—H7A108.6H21B—C21—H21C109.5
C6—C7—H7A108.6C23—C22—C20115.66 (19)
C8—C7—H7A108.6C23—C22—H22A108.4
C14—C8—C7111.34 (17)C20—C22—H22A108.4
C14—C8—C9109.29 (16)C23—C22—H22B108.4
C7—C8—C9112.75 (16)C20—C22—H22B108.3
C14—C8—H8A107.8H22A—C22—H22B107.4
C7—C8—H8A107.7C22—C23—C24111.6 (2)
C9—C8—H8A107.7C22—C23—H23A109.3
C11—C9—C8109.61 (16)C24—C23—H23A109.3
C11—C9—C10113.74 (17)C22—C23—H23B109.3
C8—C9—C10111.89 (16)C24—C23—H23B109.3
C11—C9—H9A107.1H23A—C23—H23B108.0
C8—C9—H9A107.1O4—C24—O5123.7 (2)
C10—C9—H9A107.0O4—C24—C23123.4 (2)
C19—C10—C1106.71 (18)O5—C24—C23112.9 (2)
C19—C10—C5109.08 (19)C2A—N1A—C9A117.3 (9)
C1—C10—C5107.73 (16)N1A—C2A—C3A119.3 (10)
C19—C10—C9111.32 (17)N1A—C2A—H2Q120.8
C1—C10—C9112.12 (18)C3A—C2A—H2Q118.6
C5—C10—C9109.75 (17)N4A—C3A—C2A123.7 (8)
C12—C11—C9114.72 (17)N4A—C3A—H3Q116.9
C12—C11—H11A108.5C2A—C3A—H3Q118.9
C9—C11—H11A108.6C3A—N4A—C10A116.4 (6)
C12—C11—H11B108.7C6A—C5A—C10A119.7 (10)
C9—C11—H11B108.5C6A—C5A—H5Q120.0
H11A—C11—H11B107.6C10A—C5A—H5Q120.2
O3—C12—C11107.76 (15)C5A—C6A—C7A123.0 (8)
O3—C12—C13111.10 (16)C5A—C6A—H6Q121.9
C11—C12—C13110.99 (17)C7A—C6A—H6Q115.1
O3—C12—H12A109.0C8A—C7A—C6A121.6 (7)
C11—C12—H12A109.0C8A—C7A—H7Q118.4
C13—C12—H12A108.9C6A—C7A—H7Q120.0
C18—C13—C14112.59 (17)C7A—C8A—C9A120.6 (7)
C18—C13—C12109.39 (16)C7A—C8A—H8Q120.0
C14—C13—C12106.79 (15)C9A—C8A—H8Q119.4
C18—C13—C17109.80 (15)N1A—C9A—C10A120.4 (6)
C14—C13—C1799.98 (16)N1A—C9A—C8A120.6 (7)
C12—C13—C17118.02 (17)C10A—C9A—C8A118.9 (7)
C8—C14—C15117.58 (17)N4A—C10A—C9A122.9 (6)
C8—C14—C13115.05 (17)N4A—C10A—C5A121.1 (8)
C15—C14—C13104.49 (15)C9A—C10A—C5A116.0 (8)
C8—C14—H14A106.4
C10—C1—C2—C358.4 (2)C7—C8—C14—C13−175.02 (16)
C1—C2—C3—O1−175.59 (17)C9—C8—C14—C1359.8 (2)
C1—C2—C3—C4−56.3 (2)C18—C13—C14—C860.7 (2)
O1—C3—C4—C5174.60 (17)C12—C13—C14—C8−59.4 (2)
C2—C3—C4—C555.1 (2)C17—C13—C14—C8177.19 (16)
C3—C4—C5—C6−179.90 (18)C18—C13—C14—C15−69.7 (2)
C3—C4—C5—C10−53.0 (2)C12—C13—C14—C15170.20 (16)
C4—C5—C6—C775.1 (2)C17—C13—C14—C1546.75 (18)
C10—C5—C6—C7−52.1 (2)C8—C14—C15—C16−164.70 (17)
C5—C6—C7—O2−69.4 (2)C13—C14—C15—C16−35.8 (2)
C5—C6—C7—C851.0 (2)C14—C15—C16—C1710.5 (2)
O2—C7—C8—C14−52.2 (2)C18—C13—C17—C20−44.7 (2)
C6—C7—C8—C14−175.64 (16)C14—C13—C17—C20−163.28 (17)
O2—C7—C8—C971.1 (2)C12—C13—C17—C2081.5 (2)
C6—C7—C8—C9−52.4 (2)C18—C13—C17—C1679.92 (19)
C14—C8—C9—C11−53.0 (2)C14—C13—C17—C16−38.63 (17)
C7—C8—C9—C11−177.41 (17)C12—C13—C17—C16−153.84 (17)
C14—C8—C9—C10179.85 (17)C15—C16—C17—C20147.96 (16)
C7—C8—C9—C1055.4 (2)C15—C16—C17—C1317.9 (2)
C2—C1—C10—C19−170.19 (19)C13—C17—C20—C21−57.8 (2)
C2—C1—C10—C5−53.2 (2)C16—C17—C20—C21−178.47 (17)
C2—C1—C10—C967.7 (2)C13—C17—C20—C22178.95 (18)
C6—C5—C10—C19−69.9 (2)C16—C17—C20—C2258.3 (2)
C4—C5—C10—C19164.58 (17)C21—C20—C22—C2365.8 (3)
C6—C5—C10—C1174.60 (17)C17—C20—C22—C23−169.5 (2)
C4—C5—C10—C149.1 (2)C20—C22—C23—C24175.6 (2)
C6—C5—C10—C952.3 (2)C22—C23—C24—O4−31.5 (4)
C4—C5—C10—C9−73.2 (2)C22—C23—C24—O5147.5 (2)
C11—C9—C10—C19−58.2 (2)C9A—N1A—C2A—C3A−2.5 (18)
C8—C9—C10—C1966.7 (2)N1A—C2A—C3A—N4A4.0 (18)
C11—C9—C10—C161.3 (2)C2A—C3A—N4A—C10A−2.8 (12)
C8—C9—C10—C1−173.85 (16)C10A—C5A—C6A—C7A0(2)
C11—C9—C10—C5−179.05 (16)C5A—C6A—C7A—C8A−2.9 (16)
C8—C9—C10—C5−54.2 (2)C6A—C7A—C8A—C9A2.5 (10)
C8—C9—C11—C1253.5 (2)C2A—N1A—C9A—C10A0.2 (13)
C10—C9—C11—C12179.60 (16)C2A—N1A—C9A—C8A−175.9 (10)
C9—C11—C12—O366.7 (2)C7A—C8A—C9A—N1A177.3 (7)
C9—C11—C12—C13−55.2 (2)C7A—C8A—C9A—C10A1.1 (9)
O3—C12—C13—C18172.15 (16)C3A—N4A—C10A—C9A0.3 (9)
C11—C12—C13—C18−68.0 (2)C3A—N4A—C10A—C5A−178.4 (10)
O3—C12—C13—C14−65.74 (19)N1A—C9A—C10A—N4A1.0 (10)
C11—C12—C13—C1454.1 (2)C8A—C9A—C10A—N4A177.2 (6)
O3—C12—C13—C1745.7 (2)N1A—C9A—C10A—C5A179.8 (10)
C11—C12—C13—C17165.59 (16)C8A—C9A—C10A—C5A−4.0 (11)
C7—C8—C14—C15−51.3 (2)C6A—C5A—C10A—N4A−177.4 (11)
C9—C8—C14—C15−176.48 (16)C6A—C5A—C10A—C9A3.8 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1O···O3i0.822.032.815 (2)161
O2—H2O···O1i0.821.862.648 (2)160
O3—H3O···O4ii0.822.032.834 (2)167
O5—H5O···O2ii0.821.852.656 (2)170

Symmetry codes: (i) −x+1, y−1/2, −z+2; (ii) −x, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2200).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Miyata, M. & Sada, K. (1996). Comprehensive Supramolecular Chemistry. Solid-State Supramolecular Chemistry: Crystal Engineering, Vol. 6, edited by D. D. MacNicol, F. Toda & R. Bishop, pp. 147–176. Oxford: Pergamon.
  • Nakano, K., Sada, K., Aburaya, K., Nakagawa, K., Yoswathananont, N., Tohnai, N. & Miyata, M. (2006). CrystEngComm, 8, 461–467.
  • Nakano, K., Sada, K., Kurozumi, J. & Miyata, M. (2001). Chem. Eur. J.7, 209–220. [PubMed]
  • Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Abingdon, Oxfordshire, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography