PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o954–o955.
Published online 2008 May 3. doi:  10.1107/S1600536808012257
PMCID: PMC2961424

(E)-3-(4-Methyl­phen­yl)-1-(4-nitro­phenyl)prop-2-en-1-one

Abstract

The asymmetric unit of the title compound, C16H13NO3, contains two independent mol­ecules related approximately by a pseudo-twofold rotation axis. The dihedral angle between the nitro­benzene and methyl­phenyl rings is 42.18 (6)° in one mol­ecule and 12.97 (6)° in the other. In both mol­ecules, the nitro group is slightly twisted away from the attached benzene ring. In the crystal structure, the mol­ecules are stacked along the b axis and are linked via C—H(...)O and C—H(...)π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures, see: Fun et al. (2007 [triangle]); Patil et al. (2007 [triangle] a [triangle],b [triangle]); Patil, Dharmaprakash et al. (2007 [triangle]). For background to the applications of substituted chalcones, see: Agrinskaya et al. (1999 [triangle]); Gu et al. (2008 [triangle]); Patil et al. (2006 [triangle]); Patil, Dharmaprakash et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o954-scheme1.jpg

Experimental

Crystal data

  • C16H13NO3
  • M r = 267.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o954-efi1.jpg
  • a = 5.8857 (1) Å
  • b = 7.8800 (1) Å
  • c = 27.4745 (4) Å
  • α = 88.793 (1)°
  • β = 85.665 (1)°
  • γ = 82.645 (1)°
  • V = 1260.07 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100.0 (1) K
  • 0.43 × 0.26 × 0.23 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.959, T max = 0.977
  • 32268 measured reflections
  • 6666 independent reflections
  • 5182 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.131
  • S = 1.09
  • 6666 reflections
  • 363 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012257/ci2586sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012257/ci2586Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Substituted chalcones exhibit second-harmonic generation in crystalline form and possess optical limiting behavior with femtosecond laser pulse at 780 nm wavelength (Gu et al., 2008; Patil et al., 2006, 2007c; Agrinskaya et al., 1999). The main idea behind the above studies was to introduce various donor/acceptor substituents [OCH3, N(CH3)2, NH2, F, Cl, Br, CH3, NO2] on either side of benzene rings and to observe the structure-activity relationship. In view of the importance of substituted chalcones, the title compound was synthesized and its crystal structure is reported here.

There are two independent molecules, A and B, in the asymmetric unit of the title compound (Fig. 1). Bond lengths and angles in both molecules are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Fun et al., 2007; Patil et al., 2007a,b). The dihedral angles between the nitrobenzene and methylphenyl rings are 42.18 (6)° and 12.97 (6)° in molecule A and B, respectively. In molecule A, atoms O1A, C6A, C7A and C8A are coplanar and the least-squares plane through these atoms makes dihedral angles of 20.21 (8)° and 24.41 (7)° with the nitrobenzene (C1A–C6A) and methylbenzene (C10A–C15A) rings, repectively. However, in molecule B atoms O1B, C6B, C7B, C8B, C9B and C10B are coplanar, and the dihedral angles formed by the mean plane through these atoms with the nirobenzene and methylbenzene rings are 16.85 (6)° and 16.97 (6)°, respectively. The nitro groups are slightly twisted away from the plane of the attached benzene rings, with the O2—N1—C3—C2 torsion angles being 11.2 (2)° and 5.84 (19)° in molecules A and B, respectively, and the O3—N1—C3—C4 torsion angles being 11.5 (2)° and 4.54 (19)°, in A and B,respectively. In each of the independent molecules, a weak C9—H9···O1 interaction generates an S(5) ring motif (Bernstein et al., 1995) (Table 1).

In the crystal structure (Fig. 2), the molecules are stacked in as anti-parallel pairs approximately along the b axis. The crystal structure is stabilized by weak C—H···O hydrogen bonds and C—H···π interactions (Table 1) involving the C10A-C15A (centroid Cg1) and C1B-C6B (centroid Cg2) benzene rings.

Experimental

The title compound was synthesized by the condensation of p-tolualdehyde (0.01 mol) with 4-nitroacetophenone (0.01 mol) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring for 2 hr, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 hr. The resulting crude solid was filtered and dried. Yellow single crystals of the title compound suitable for X-ray structure determination were recrystallized from N,N-dimethylformamide (DMF).

Refinement

All H atoms were placed in calculated positions, with d(C—H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for and aromatic H and d(C—H) = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Weak C—H···O intramolecular interactions are drawn as dashed lines.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis showing stacking of anti-parallel pairs of molecules approximately along the b axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C16H13NO3Z = 4
Mr = 267.27F000 = 560
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 5.8857 (1) ÅCell parameters from 6666 reflections
b = 7.8800 (1) Åθ = 0.7–29.0º
c = 27.4745 (4) ŵ = 0.10 mm1
α = 88.793 (1)ºT = 100.0 (1) K
β = 85.665 (1)ºBlock, yellow
γ = 82.645 (1)º0.43 × 0.26 × 0.23 mm
V = 1260.07 (3) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6666 independent reflections
Radiation source: fine-focus sealed tube5182 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
Detector resolution: 8.33 pixels mm-1θmax = 29.0º
T = 100.0(1) Kθmin = 0.7º
ω scansh = −8→8
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −10→8
Tmin = 0.959, Tmax = 0.977l = −37→37
32268 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.131  w = 1/[σ2(Fo2) + (0.061P)2 + 0.3735P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
6666 reflectionsΔρmax = 0.38 e Å3
363 parametersΔρmin = −0.26 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1A0.21638 (17)0.20887 (14)0.77198 (4)0.0239 (2)
O2A0.88278 (19)−0.18446 (17)0.96280 (4)0.0382 (3)
O3A0.52447 (19)−0.18264 (14)0.98705 (4)0.0271 (2)
N1A0.6782 (2)−0.14787 (16)0.95730 (4)0.0219 (3)
C1A0.7223 (2)0.03671 (18)0.83164 (5)0.0193 (3)
H1A0.83400.04630.80630.023*
C2A0.7813 (2)−0.04744 (18)0.87474 (5)0.0196 (3)
H2A0.9319−0.09550.87850.024*
C3A0.6122 (2)−0.05826 (17)0.91193 (5)0.0171 (3)
C4A0.3867 (2)0.00997 (18)0.90810 (5)0.0203 (3)
H4A0.27610.00090.93370.024*
C5A0.3298 (2)0.09255 (18)0.86483 (5)0.0197 (3)
H5A0.17860.13940.86130.024*
C6A0.4958 (2)0.10657 (17)0.82647 (5)0.0158 (3)
C7A0.4201 (2)0.19297 (17)0.77999 (5)0.0169 (3)
C8A0.5949 (2)0.25902 (17)0.74603 (5)0.0174 (3)
H8A0.74500.25550.75480.021*
C9A0.5374 (2)0.32427 (17)0.70247 (5)0.0170 (3)
H9A0.38910.31560.69410.020*
C10A0.6854 (2)0.40782 (17)0.66680 (5)0.0158 (3)
C11A0.6179 (2)0.43784 (17)0.61919 (5)0.0172 (3)
H11A0.48110.40260.61090.021*
C12A0.7501 (2)0.51888 (17)0.58421 (5)0.0185 (3)
H12A0.70270.53500.55270.022*
C13A0.9536 (2)0.57638 (17)0.59585 (5)0.0179 (3)
C14A1.0189 (2)0.54932 (17)0.64355 (5)0.0181 (3)
H14A1.15250.58870.65210.022*
C15A0.8900 (2)0.46549 (17)0.67837 (5)0.0177 (3)
H15A0.93960.44740.70960.021*
C16A1.0971 (2)0.66602 (19)0.55834 (5)0.0224 (3)
H16A0.99970.75090.54140.034*
H16B1.17530.58410.53540.034*
H16C1.20790.72030.57430.034*
O1B−0.02096 (17)0.84372 (13)0.73497 (4)0.0228 (2)
O2B0.65858 (19)1.10645 (15)0.52474 (4)0.0302 (3)
O3B0.3249 (2)1.25845 (15)0.52514 (4)0.0342 (3)
N1B0.4637 (2)1.14949 (16)0.54285 (4)0.0227 (3)
C1B0.4905 (2)0.88516 (18)0.65652 (5)0.0193 (3)
H1B0.59790.81230.67260.023*
C2B0.5542 (2)0.95813 (18)0.61183 (5)0.0196 (3)
H2B0.70300.93390.59760.024*
C3B0.3911 (2)1.06743 (17)0.58920 (5)0.0181 (3)
C4B0.1681 (2)1.10666 (18)0.60879 (5)0.0204 (3)
H4B0.06251.18170.59280.024*
C5B0.1060 (2)1.03113 (18)0.65291 (5)0.0192 (3)
H5B−0.04411.05410.66650.023*
C6B0.2662 (2)0.92085 (17)0.67722 (5)0.0167 (3)
C7B0.1851 (2)0.84063 (17)0.72448 (5)0.0175 (3)
C8B0.3587 (2)0.75994 (18)0.75670 (5)0.0190 (3)
H8B0.51390.75410.74660.023*
C9B0.2950 (2)0.69516 (17)0.80024 (5)0.0186 (3)
H9B0.13800.70500.80890.022*
C10B0.4455 (2)0.61059 (17)0.83569 (5)0.0176 (3)
C11B0.3559 (2)0.57945 (18)0.88324 (5)0.0196 (3)
H11B0.20140.61410.89190.024*
C12B0.4946 (2)0.49752 (18)0.91766 (5)0.0203 (3)
H12B0.43200.47920.94910.024*
C13B0.7260 (2)0.44249 (18)0.90559 (5)0.0194 (3)
C14B0.8147 (2)0.47184 (18)0.85790 (5)0.0197 (3)
H14B0.96840.43480.84900.024*
C15B0.6776 (2)0.55527 (18)0.82360 (5)0.0192 (3)
H15B0.74080.57460.79220.023*
C16B0.8747 (3)0.3557 (2)0.94323 (5)0.0236 (3)
H16D0.84750.41840.97310.035*
H16E1.03340.35200.93170.035*
H16F0.83850.24130.94890.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O1A0.0172 (5)0.0334 (6)0.0213 (5)−0.0041 (4)−0.0029 (4)0.0080 (4)
O2A0.0253 (6)0.0570 (8)0.0311 (6)0.0002 (5)−0.0093 (5)0.0183 (6)
O3A0.0333 (6)0.0294 (6)0.0187 (5)−0.0066 (5)0.0006 (4)0.0073 (4)
N1A0.0267 (6)0.0219 (6)0.0173 (6)−0.0033 (5)−0.0037 (5)0.0040 (5)
C1A0.0173 (6)0.0225 (7)0.0174 (6)−0.0017 (5)0.0016 (5)0.0022 (5)
C2A0.0172 (6)0.0226 (7)0.0187 (7)−0.0005 (5)−0.0023 (5)0.0035 (5)
C3A0.0205 (7)0.0170 (6)0.0143 (6)−0.0036 (5)−0.0030 (5)0.0023 (5)
C4A0.0190 (7)0.0243 (7)0.0175 (6)−0.0040 (5)0.0014 (5)0.0032 (5)
C5A0.0165 (6)0.0232 (7)0.0187 (6)−0.0009 (5)−0.0009 (5)0.0037 (5)
C6A0.0171 (6)0.0146 (6)0.0161 (6)−0.0034 (5)−0.0014 (5)0.0010 (5)
C7A0.0186 (6)0.0172 (6)0.0147 (6)−0.0024 (5)−0.0002 (5)0.0017 (5)
C8A0.0159 (6)0.0177 (6)0.0184 (6)−0.0025 (5)0.0000 (5)0.0012 (5)
C9A0.0159 (6)0.0181 (6)0.0166 (6)−0.0015 (5)−0.0002 (5)0.0005 (5)
C10A0.0166 (6)0.0146 (6)0.0155 (6)−0.0002 (5)0.0001 (5)0.0012 (5)
C11A0.0163 (6)0.0178 (6)0.0176 (6)−0.0027 (5)−0.0010 (5)−0.0002 (5)
C12A0.0223 (7)0.0190 (7)0.0132 (6)−0.0001 (5)−0.0004 (5)0.0014 (5)
C13A0.0190 (6)0.0149 (6)0.0184 (6)0.0005 (5)0.0028 (5)0.0013 (5)
C14A0.0150 (6)0.0189 (7)0.0204 (7)−0.0028 (5)−0.0001 (5)−0.0006 (5)
C15A0.0185 (6)0.0187 (7)0.0155 (6)−0.0010 (5)−0.0011 (5)0.0005 (5)
C16A0.0235 (7)0.0222 (7)0.0208 (7)−0.0040 (6)0.0038 (5)0.0027 (5)
O1B0.0193 (5)0.0286 (6)0.0201 (5)−0.0027 (4)−0.0007 (4)0.0026 (4)
O2B0.0307 (6)0.0363 (6)0.0235 (5)−0.0083 (5)0.0044 (4)0.0055 (5)
O3B0.0455 (7)0.0300 (6)0.0249 (6)0.0027 (5)−0.0036 (5)0.0107 (5)
N1B0.0318 (7)0.0202 (6)0.0169 (6)−0.0065 (5)−0.0013 (5)0.0020 (5)
C1B0.0185 (6)0.0180 (7)0.0209 (7)−0.0001 (5)−0.0033 (5)0.0033 (5)
C2B0.0173 (6)0.0197 (7)0.0212 (7)−0.0014 (5)0.0009 (5)−0.0002 (5)
C3B0.0255 (7)0.0152 (6)0.0140 (6)−0.0045 (5)−0.0020 (5)0.0012 (5)
C4B0.0227 (7)0.0179 (7)0.0201 (7)0.0006 (5)−0.0052 (5)0.0019 (5)
C5B0.0181 (6)0.0191 (7)0.0199 (7)−0.0002 (5)−0.0016 (5)0.0002 (5)
C6B0.0187 (6)0.0160 (6)0.0156 (6)−0.0029 (5)−0.0022 (5)0.0001 (5)
C7B0.0191 (6)0.0163 (6)0.0170 (6)−0.0021 (5)−0.0015 (5)−0.0004 (5)
C8B0.0176 (6)0.0206 (7)0.0187 (7)−0.0014 (5)−0.0022 (5)0.0017 (5)
C9B0.0193 (6)0.0181 (7)0.0184 (6)−0.0020 (5)−0.0016 (5)0.0008 (5)
C10B0.0204 (7)0.0177 (6)0.0155 (6)−0.0047 (5)−0.0028 (5)0.0018 (5)
C11B0.0181 (6)0.0225 (7)0.0179 (6)−0.0024 (5)−0.0003 (5)0.0024 (5)
C12B0.0234 (7)0.0222 (7)0.0152 (6)−0.0036 (6)−0.0010 (5)0.0035 (5)
C13B0.0215 (7)0.0175 (7)0.0198 (7)−0.0043 (5)−0.0032 (5)0.0011 (5)
C14B0.0179 (6)0.0214 (7)0.0194 (7)−0.0015 (5)−0.0012 (5)0.0018 (5)
C15B0.0226 (7)0.0200 (7)0.0150 (6)−0.0040 (5)−0.0001 (5)0.0012 (5)
C16B0.0237 (7)0.0290 (8)0.0177 (7)−0.0020 (6)−0.0027 (5)0.0057 (6)

Geometric parameters (Å, °)

O1A—C7A1.2256 (16)O1B—C7B1.2224 (17)
O2A—N1A1.2219 (16)O2B—N1B1.2245 (16)
O3A—N1A1.2263 (16)O3B—N1B1.2264 (16)
N1A—C3A1.4728 (17)N1B—C3B1.4751 (17)
C1A—C2A1.3903 (18)C1B—C2B1.3909 (19)
C1A—C6A1.3919 (18)C1B—C6B1.3944 (19)
C1A—H1A0.93C1B—H1B0.93
C2A—C3A1.3805 (19)C2B—C3B1.3808 (19)
C2A—H2A0.93C2B—H2B0.93
C3A—C4A1.3780 (19)C3B—C4B1.380 (2)
C4A—C5A1.3857 (18)C4B—C5B1.3839 (19)
C4A—H4A0.93C4B—H4B0.93
C5A—C6A1.3944 (18)C5B—C6B1.3969 (18)
C5A—H5A0.93C5B—H5B0.93
C6A—C7A1.5048 (18)C6B—C7B1.5039 (18)
C7A—C8A1.4735 (18)C7B—C8B1.4759 (18)
C8A—C9A1.3422 (18)C8B—C9B1.3370 (19)
C8A—H8A0.93C8B—H8B0.93
C9A—C10A1.4644 (18)C9B—C10B1.4594 (18)
C9A—H9A0.93C9B—H9B0.93
C10A—C15A1.4002 (19)C10B—C15B1.3966 (19)
C10A—C11A1.4024 (18)C10B—C11B1.4002 (18)
C11A—C12A1.3876 (18)C11B—C12B1.3903 (18)
C11A—H11A0.93C11B—H11B0.93
C12A—C13A1.395 (2)C12B—C13B1.393 (2)
C12A—H12A0.93C12B—H12B0.93
C13A—C14A1.3976 (19)C13B—C14B1.3992 (19)
C13A—C16A1.5050 (18)C13B—C16B1.5024 (19)
C14A—C15A1.3853 (18)C14B—C15B1.3874 (19)
C14A—H14A0.93C14B—H14B0.93
C15A—H15A0.93C15B—H15B0.93
C16A—H16A0.96C16B—H16D0.96
C16A—H16B0.96C16B—H16E0.96
C16A—H16C0.96C16B—H16F0.96
O2A—N1A—O3A123.99 (12)O2B—N1B—O3B124.08 (12)
O2A—N1A—C3A117.98 (12)O2B—N1B—C3B118.32 (12)
O3A—N1A—C3A118.03 (12)O3B—N1B—C3B117.60 (12)
C2A—C1A—C6A119.95 (12)C2B—C1B—C6B120.27 (12)
C2A—C1A—H1A120.0C2B—C1B—H1B119.9
C6A—C1A—H1A120.0C6B—C1B—H1B119.9
C3A—C2A—C1A118.73 (12)C3B—C2B—C1B118.31 (13)
C3A—C2A—H2A120.6C3B—C2B—H2B120.8
C1A—C2A—H2A120.6C1B—C2B—H2B120.8
C4A—C3A—C2A122.82 (12)C4B—C3B—C2B122.99 (12)
C4A—C3A—N1A119.25 (12)C4B—C3B—N1B119.29 (12)
C2A—C3A—N1A117.92 (12)C2B—C3B—N1B117.69 (12)
C3A—C4A—C5A117.86 (12)C3B—C4B—C5B118.12 (12)
C3A—C4A—H4A121.1C3B—C4B—H4B120.9
C5A—C4A—H4A121.1C5B—C4B—H4B120.9
C4A—C5A—C6A121.03 (13)C4B—C5B—C6B120.75 (13)
C4A—C5A—H5A119.5C4B—C5B—H5B119.6
C6A—C5A—H5A119.5C6B—C5B—H5B119.6
C1A—C6A—C5A119.60 (12)C1B—C6B—C5B119.56 (12)
C1A—C6A—C7A122.29 (12)C1B—C6B—C7B122.63 (12)
C5A—C6A—C7A118.08 (12)C5B—C6B—C7B117.79 (12)
O1A—C7A—C8A122.24 (12)O1B—C7B—C8B122.13 (12)
O1A—C7A—C6A119.41 (12)O1B—C7B—C6B119.37 (12)
C8A—C7A—C6A118.34 (11)C8B—C7B—C6B118.50 (12)
C9A—C8A—C7A120.01 (12)C9B—C8B—C7B120.66 (13)
C9A—C8A—H8A120.0C9B—C8B—H8B119.7
C7A—C8A—H8A120.0C7B—C8B—H8B119.7
C8A—C9A—C10A126.33 (13)C8B—C9B—C10B126.94 (13)
C8A—C9A—H9A116.8C8B—C9B—H9B116.5
C10A—C9A—H9A116.8C10B—C9B—H9B116.5
C15A—C10A—C11A117.72 (12)C15B—C10B—C11B118.17 (12)
C15A—C10A—C9A122.96 (12)C15B—C10B—C9B122.17 (12)
C11A—C10A—C9A119.28 (12)C11B—C10B—C9B119.65 (12)
C12A—C11A—C10A121.57 (13)C12B—C11B—C10B120.96 (13)
C12A—C11A—H11A119.2C12B—C11B—H11B119.5
C10A—C11A—H11A119.2C10B—C11B—H11B119.5
C11A—C12A—C13A120.58 (12)C11B—C12B—C13B120.84 (13)
C11A—C12A—H12A119.7C11B—C12B—H12B119.6
C13A—C12A—H12A119.7C13B—C12B—H12B119.6
C12A—C13A—C14A117.86 (12)C12B—C13B—C14B118.14 (12)
C12A—C13A—C16A121.01 (12)C12B—C13B—C16B120.38 (12)
C14A—C13A—C16A121.13 (13)C14B—C13B—C16B121.47 (13)
C15A—C14A—C13A121.84 (13)C15B—C14B—C13B121.19 (13)
C15A—C14A—H14A119.1C15B—C14B—H14B119.4
C13A—C14A—H14A119.1C13B—C14B—H14B119.4
C14A—C15A—C10A120.40 (12)C14B—C15B—C10B120.68 (12)
C14A—C15A—H15A119.8C14B—C15B—H15B119.7
C10A—C15A—H15A119.8C10B—C15B—H15B119.7
C13A—C16A—H16A109.5C13B—C16B—H16D109.5
C13A—C16A—H16B109.5C13B—C16B—H16E109.5
H16A—C16A—H16B109.5H16D—C16B—H16E109.5
C13A—C16A—H16C109.5C13B—C16B—H16F109.5
H16A—C16A—H16C109.5H16D—C16B—H16F109.5
H16B—C16A—H16C109.5H16E—C16B—H16F109.5
C6A—C1A—C2A—C3A−0.6 (2)C6B—C1B—C2B—C3B0.8 (2)
C1A—C2A—C3A—C4A0.4 (2)C1B—C2B—C3B—C4B−0.3 (2)
C1A—C2A—C3A—N1A−179.99 (13)C1B—C2B—C3B—N1B177.49 (12)
O2A—N1A—C3A—C4A−169.19 (14)O2B—N1B—C3B—C4B−176.27 (13)
O3A—N1A—C3A—C4A11.5 (2)O3B—N1B—C3B—C4B4.54 (19)
O2A—N1A—C3A—C2A11.2 (2)O2B—N1B—C3B—C2B5.84 (19)
O3A—N1A—C3A—C2A−168.15 (13)O3B—N1B—C3B—C2B−173.35 (13)
C2A—C3A—C4A—C5A0.0 (2)C2B—C3B—C4B—C5B−0.7 (2)
N1A—C3A—C4A—C5A−179.61 (13)N1B—C3B—C4B—C5B−178.43 (12)
C3A—C4A—C5A—C6A−0.2 (2)C3B—C4B—C5B—C6B1.2 (2)
C2A—C1A—C6A—C5A0.5 (2)C2B—C1B—C6B—C5B−0.3 (2)
C2A—C1A—C6A—C7A−177.56 (13)C2B—C1B—C6B—C7B177.65 (13)
C4A—C5A—C6A—C1A0.0 (2)C4B—C5B—C6B—C1B−0.7 (2)
C4A—C5A—C6A—C7A178.06 (13)C4B—C5B—C6B—C7B−178.75 (13)
C1A—C6A—C7A—O1A159.57 (14)C1B—C6B—C7B—O1B−162.74 (14)
C5A—C6A—C7A—O1A−18.5 (2)C5B—C6B—C7B—O1B15.3 (2)
C1A—C6A—C7A—C8A−21.7 (2)C1B—C6B—C7B—C8B17.1 (2)
C5A—C6A—C7A—C8A160.26 (13)C5B—C6B—C7B—C8B−164.91 (12)
O1A—C7A—C8A—C9A−6.7 (2)O1B—C7B—C8B—C9B−3.8 (2)
C6A—C7A—C8A—C9A174.58 (12)C6B—C7B—C8B—C9B176.38 (13)
C7A—C8A—C9A—C10A174.30 (12)C7B—C8B—C9B—C10B179.38 (13)
C8A—C9A—C10A—C15A−15.3 (2)C8B—C9B—C10B—C15B−13.8 (2)
C8A—C9A—C10A—C11A167.03 (13)C8B—C9B—C10B—C11B167.69 (14)
C15A—C10A—C11A—C12A1.2 (2)C15B—C10B—C11B—C12B0.7 (2)
C9A—C10A—C11A—C12A179.00 (12)C9B—C10B—C11B—C12B179.31 (13)
C10A—C11A—C12A—C13A−1.3 (2)C10B—C11B—C12B—C13B−0.7 (2)
C11A—C12A—C13A—C14A0.1 (2)C11B—C12B—C13B—C14B−0.1 (2)
C11A—C12A—C13A—C16A−179.37 (13)C11B—C12B—C13B—C16B179.37 (14)
C12A—C13A—C14A—C15A1.2 (2)C12B—C13B—C14B—C15B0.8 (2)
C16A—C13A—C14A—C15A−179.32 (13)C16B—C13B—C14B—C15B−178.62 (14)
C13A—C14A—C15A—C10A−1.3 (2)C13B—C14B—C15B—C10B−0.8 (2)
C11A—C10A—C15A—C14A0.09 (19)C11B—C10B—C15B—C14B0.0 (2)
C9A—C10A—C15A—C14A−177.62 (12)C9B—C10B—C15B—C14B−178.54 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1A—H1A···O1Bi0.932.583.2597 (17)131
C9A—H9A···O1A0.932.482.8045 (17)101
C9B—H9B···O1B0.932.482.8112 (17)101
C1B—H1B···Cg10.932.903.4853 (15)123
C4B—H4B···Cg1ii0.932.863.4837 (15)126
C16A—H16C···Cg2iii0.962.913.7837 (15)151

Symmetry codes: (i) x+1, y−1, z; (ii) x−1, y+1, z; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2586).

References

  • Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2007). Acta Cryst. E63, o561–o562.
  • Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett.92, 091118.
  • Patil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o1738–o1740.
  • Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.
  • Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.
  • Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497–o2498.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography