PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o956–o957.
Published online 2008 May 3. doi:  10.1107/S1600536808012178
PMCID: PMC2961420

(E)-3-(4-Chloro­phen­yl)-1-(2,4-dichloro-5-fluoro­phen­yl)prop-2-en-1-one

Abstract

In the title chalcone derivative, C15H8Cl3FO, the dihedral angle between the two benzene rings is 43.35 (8)°. Weak C—H(...)O and C—H(...)Cl intra­molecular inter­actions involving the enone group generate S(5) and S(6) ring motifs, respectively. In the crystal structure, mol­ecules are linked into anti­parallel chains along the a axis. These chains are stacked along the b axis and short Cl(...)F contacts of 3.100 (1) Å link adjacent mol­ecules of the anti­parallel chains into dimers.

Related literature

For hydrogen bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For related structures, see, for example: Fun et al. (2007 [triangle]); Patil et al. (2007a [triangle],b). For background to the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999 [triangle]); Patil et al. (2006 [triangle]); Shivarama Holla et al. (2004 [triangle]). For related literature, see: Gu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o956-scheme1.jpg

Experimental

Crystal data

  • C15H8Cl3FO
  • M r = 329.56
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o956-efi1.jpg
  • a = 6.8271 (1) Å
  • b = 3.7832 (1) Å
  • c = 52.0206 (10) Å
  • β = 96.100 (1)°
  • V = 1336.00 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.69 mm−1
  • T = 100.0 (1) K
  • 0.35 × 0.29 × 0.18 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.794, T max = 0.889
  • 42462 measured reflections
  • 5852 independent reflections
  • 5257 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.113
  • S = 1.28
  • 5852 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012178/sj2488sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012178/sj2488Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is supported by Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

In recent years extensive research has been carried out on organic nonlinear optical materials particularly chalcone derivatives due to their high nonlinearity, varied synthesis, and better laser damage resistance as compared to their inorganic counterparts (Agrinskaya et al., 1999; Shivarama Holla et al., 2004; Patil et al., 2006). In view of the importance of these organic materials, the title compound (I) was synthesized and its crystal structure is reported here.

The total molecular structure of the title compound (Fig. 1) is not planar, the dihedral angles between the two benzene rings is 43.35 (8)°. Atoms O1, C6, C7 and C8 lie on a plane and the least-squares plane through this moiety makes dihedral angles of 47.45 (10)° and 4.16 (10)° with the C1–C6 and C10–C15 benzene rings, repectively. The orientation of the prop-2-en-1-one unit can be indicated by the torsion angles C7–C8–C9–C10 = 177.37 (16)° and O1–C7–C8–C9 = 7.5 (3)°. Bond lengths and angles in (I) are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Fun et al., 2007; Patil et al., 2007a; 2007b).

In the structure, weak C9—H9···O1 and C8—H8···Cl2 intramolecular interactions generate S(5) and S(6) ring motifs (Bernstein et al., 1995) (Table 1). In the crystal structure (Fig. 2), the molecules are linked into anti-parallel chains along the a axis. These chains are stacked along the b-axis and short Cl···F contacts of 3.100 (1) Å link adjacent molecules of the anti-parallel chains into dimers. The crystal is also stabilized by weak C—H···O and C—H···Cl intramolecular interactions (Table 1).

Experimental

The title compound was synthesized by the condensation of 4-chlorobenzaldehyde (0.01 mol) with 2,4-dichloro-5-fluoroacetophenone (0.01 mol) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (10 ml, 10%). After stirring for 8 hr, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 hr. The resulting crude solid was filtered and dried. Colorless block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from acetone.

Refinement

All H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for CH and aromatic atoms. The highest residual electron density peak is located at 0.67 Å from C4 and the deepest hole is located at 0.54 Å from Cl1.

Figures

Fig. 1.
The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Weak intramolecular C—H···O and C—H···Cl interactions are drawn as dashed lines.
Fig. 2.
The crystal packing of (I), viewed along the b axis showing stacking of anti-parallel chains of molecules approximately along the b axis. Cl···F short contacts and weak C—H···O and C—H···Cl ...

Crystal data

C15H8Cl3FOF000 = 664
Mr = 329.56Dx = 1.638 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5852 reflections
a = 6.8271 (1) Åθ = 0.8–35.0º
b = 3.7832 (1) ŵ = 0.69 mm1
c = 52.0206 (10) ÅT = 100.0 (1) K
β = 96.100 (1)ºBlock, colorless
V = 1336.00 (5) Å30.35 × 0.29 × 0.18 mm
Z = 4

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer5852 independent reflections
Radiation source: fine-focus sealed tube5257 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.036
Detector resolution: 8.33 pixels mm-1θmax = 35.0º
T = 100.0(1) Kθmin = 0.8º
ω scansh = −11→11
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −6→6
Tmin = 0.794, Tmax = 0.889l = −83→72
42462 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.0246P)2 + 1.777P] where P = (Fo2 + 2Fc2)/3
S = 1.29(Δ/σ)max = 0.001
5852 reflectionsΔρmax = 0.47 e Å3
181 parametersΔρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.75834 (7)0.29526 (14)0.494133 (8)0.02272 (10)
Cl20.27758 (6)−0.21297 (12)0.414214 (9)0.01926 (9)
Cl3−0.33602 (6)0.43796 (13)0.273464 (9)0.02136 (9)
F11.03386 (16)0.3790 (4)0.45548 (2)0.0240 (2)
O10.75361 (19)−0.1864 (4)0.37069 (3)0.0211 (3)
C10.8267 (2)0.1756 (5)0.41951 (3)0.0159 (3)
H10.92600.21700.40900.019*
C20.8591 (2)0.2477 (5)0.44562 (3)0.0164 (3)
C30.7139 (3)0.1882 (5)0.46193 (3)0.0163 (3)
C40.5343 (2)0.0489 (5)0.45181 (3)0.0169 (3)
H40.43630.00440.46250.020*
C50.5022 (2)−0.0237 (4)0.42545 (3)0.0147 (3)
C60.6458 (2)0.0408 (4)0.40887 (3)0.0144 (3)
C70.6216 (2)−0.0317 (5)0.38025 (3)0.0153 (3)
C80.4414 (2)0.0999 (5)0.36537 (3)0.0163 (3)
H80.35520.23900.37370.020*
C90.3966 (2)0.0265 (5)0.34022 (3)0.0160 (3)
H90.4878−0.10480.33220.019*
C100.2173 (2)0.1348 (4)0.32437 (3)0.0142 (3)
C110.1999 (2)0.0697 (5)0.29770 (3)0.0160 (3)
H110.3036−0.03700.29040.019*
C120.0306 (3)0.1616 (5)0.28197 (3)0.0163 (3)
H120.02050.11870.26430.020*
C13−0.1239 (2)0.3191 (5)0.29314 (3)0.0161 (3)
C14−0.1123 (2)0.3856 (5)0.31941 (3)0.0166 (3)
H14−0.21710.49030.32660.020*
C150.0583 (2)0.2938 (5)0.33493 (3)0.0167 (3)
H150.06720.33830.35260.020*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0267 (2)0.0276 (2)0.01395 (17)−0.00233 (17)0.00251 (14)−0.00137 (16)
Cl20.01366 (16)0.02036 (19)0.02387 (19)−0.00204 (14)0.00256 (13)−0.00089 (15)
Cl30.01787 (17)0.0229 (2)0.0221 (2)0.00123 (15)−0.00347 (14)0.00159 (16)
F10.0177 (5)0.0353 (7)0.0186 (5)−0.0072 (5)0.0003 (4)−0.0023 (5)
O10.0187 (6)0.0267 (7)0.0183 (6)0.0044 (5)0.0036 (4)−0.0029 (5)
C10.0135 (6)0.0179 (7)0.0163 (7)0.0005 (5)0.0023 (5)0.0005 (6)
C20.0139 (6)0.0184 (7)0.0167 (7)−0.0008 (5)0.0008 (5)0.0006 (6)
C30.0187 (7)0.0173 (7)0.0132 (6)0.0012 (6)0.0027 (5)0.0010 (6)
C40.0160 (7)0.0190 (7)0.0163 (7)0.0008 (6)0.0046 (5)0.0022 (6)
C50.0123 (6)0.0139 (7)0.0178 (7)0.0008 (5)0.0015 (5)0.0007 (5)
C60.0139 (6)0.0142 (7)0.0149 (7)0.0022 (5)0.0013 (5)0.0012 (5)
C70.0160 (6)0.0151 (7)0.0148 (7)0.0002 (5)0.0015 (5)−0.0004 (5)
C80.0160 (7)0.0159 (7)0.0167 (7)0.0022 (6)0.0006 (5)−0.0008 (6)
C90.0156 (6)0.0156 (7)0.0166 (7)−0.0001 (5)0.0014 (5)0.0001 (6)
C100.0152 (6)0.0126 (6)0.0148 (6)−0.0005 (5)0.0017 (5)−0.0001 (5)
C110.0177 (7)0.0158 (7)0.0148 (7)0.0004 (6)0.0036 (5)−0.0008 (6)
C120.0201 (7)0.0145 (7)0.0141 (7)0.0005 (6)0.0010 (5)0.0001 (5)
C130.0156 (6)0.0154 (7)0.0166 (7)−0.0013 (6)−0.0009 (5)0.0016 (6)
C140.0157 (6)0.0168 (7)0.0175 (7)0.0017 (6)0.0028 (5)−0.0003 (6)
C150.0169 (7)0.0190 (7)0.0143 (6)0.0007 (6)0.0023 (5)−0.0006 (6)

Geometric parameters (Å, °)

Cl1—C31.7190 (17)C8—C91.341 (2)
Cl2—C51.7366 (17)C8—H80.9300
Cl3—C131.7412 (17)C9—C101.460 (2)
F1—C21.343 (2)C9—H90.9300
O1—C71.224 (2)C10—C111.402 (2)
C1—C21.380 (2)C10—C151.403 (2)
C1—C61.395 (2)C11—C121.388 (2)
C1—H10.9300C11—H110.9300
C2—C31.390 (2)C12—C131.391 (2)
C3—C41.386 (2)C12—H120.9300
C4—C51.392 (2)C13—C141.383 (2)
C4—H40.9300C14—C151.389 (2)
C5—C61.394 (2)C14—H140.9300
C6—C71.505 (2)C15—H150.9300
C7—C81.469 (2)
C2—C1—C6120.37 (15)C7—C8—H8118.8
C2—C1—H1119.8C8—C9—C10125.68 (16)
C6—C1—H1119.8C8—C9—H9117.2
F1—C2—C1119.49 (15)C10—C9—H9117.2
F1—C2—C3119.28 (15)C11—C10—C15118.36 (15)
C1—C2—C3121.23 (16)C11—C10—C9119.16 (15)
C4—C3—C2119.29 (15)C15—C10—C9122.45 (15)
C4—C3—Cl1121.14 (13)C12—C11—C10121.15 (16)
C2—C3—Cl1119.55 (13)C12—C11—H11119.4
C3—C4—C5119.29 (15)C10—C11—H11119.4
C3—C4—H4120.4C11—C12—C13118.82 (15)
C5—C4—H4120.4C11—C12—H12120.6
C4—C5—C6121.82 (15)C13—C12—H12120.6
C4—C5—Cl2116.97 (13)C14—C13—C12121.60 (15)
C6—C5—Cl2121.17 (13)C14—C13—Cl3119.38 (13)
C5—C6—C1117.98 (15)C12—C13—Cl3119.02 (13)
C5—C6—C7124.71 (15)C13—C14—C15119.06 (16)
C1—C6—C7117.29 (15)C13—C14—H14120.5
O1—C7—C8124.03 (16)C15—C14—H14120.5
O1—C7—C6118.75 (15)C14—C15—C10121.01 (16)
C8—C7—C6117.19 (14)C14—C15—H15119.5
C9—C8—C7122.36 (16)C10—C15—H15119.5
C9—C8—H8118.8
C6—C1—C2—F1−179.66 (16)C5—C6—C7—C849.0 (2)
C6—C1—C2—C30.1 (3)C1—C6—C7—C8−132.33 (17)
F1—C2—C3—C4−179.28 (16)O1—C7—C8—C97.5 (3)
C1—C2—C3—C40.9 (3)C6—C7—C8—C9−174.50 (16)
F1—C2—C3—Cl11.8 (2)C7—C8—C9—C10177.37 (16)
C1—C2—C3—Cl1−177.94 (14)C8—C9—C10—C11173.51 (18)
C2—C3—C4—C5−0.9 (3)C8—C9—C10—C15−8.3 (3)
Cl1—C3—C4—C5177.97 (14)C15—C10—C11—C120.4 (3)
C3—C4—C5—C6−0.2 (3)C9—C10—C11—C12178.70 (16)
C3—C4—C5—Cl2177.69 (14)C10—C11—C12—C13−0.4 (3)
C4—C5—C6—C11.2 (3)C11—C12—C13—C140.0 (3)
Cl2—C5—C6—C1−176.57 (13)C11—C12—C13—Cl3179.54 (14)
C4—C5—C6—C7179.86 (16)C12—C13—C14—C150.2 (3)
Cl2—C5—C6—C72.1 (2)Cl3—C13—C14—C15−179.27 (14)
C2—C1—C6—C5−1.2 (3)C13—C14—C15—C10−0.2 (3)
C2—C1—C6—C7−179.91 (16)C11—C10—C15—C14−0.2 (3)
C5—C6—C7—O1−132.87 (19)C9—C10—C15—C14−178.37 (17)
C1—C6—C7—O145.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8···Cl20.932.813.1164 (16)101
C9—H9···O10.932.572.878 (2)100

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2488).

References

  • Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2007). Acta Cryst. E63, o561–o562.
  • Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett.92, 091118–091121.
  • Patil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o1738–o1740.
  • Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.
  • Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497–o2498.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shivarama Holla, B., Veerendra, B. & Shivananda, M. K. (2004). J. Cryst. Growth, 263, 532–535.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography