PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o980.
Published online 2008 May 3. doi:  10.1107/S1600536808009100
PMCID: PMC2961419

4-[4-(Diethyl­amino)benzyl­ideneamino]-4H-1,2,4-triazole

Abstract

The title compound, C13H17N5, is a Schiff base synthesized by the reaction of 4-amino-4H-1,2,4-triazole and 4-(diethyl­amino)benzaldehyde. The triazole ring forms a dihedral angle of 5.77 (16)° with the benzene ring. The crystal structure is stabilized by an inter­molecular C—H(...)N hydrogen bond.

Related literature

For related literature, see: Zhu et al. (2000 [triangle]), Atalay et al. (2003 [triangle]); Petek et al. (2004 [triangle]); Brasselet et al. (1999 [triangle]); Cornelissen et al. (1992 [triangle]); Demirbs & Ugurluoglu Demirbas (2002 [triangle]); Fujigaya et al. (2003 [triangle]); Garcia et al. (1997 [triangle]); Kahn & Martinez (1998 [triangle]); Moliner et al. (2001 [triangle]); Tozkoparan et al. (2000 [triangle]); Turan-Zitouni et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o980-scheme1.jpg

Experimental

Crystal data

  • C13H17N5
  • M r = 243.32
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o980-efi1.jpg
  • a = 7.740 (3) Å
  • b = 9.238 (4) Å
  • c = 18.497 (7) Å
  • V = 1322.5 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.37 × 0.35 × 0.11 mm

Data collection

  • Bruker APEX2 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.972, T max = 0.992
  • 6650 measured reflections
  • 1359 independent reflections
  • 895 reflections with I > 2σ(I)
  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.131
  • S = 1.09
  • 1359 reflections
  • 165 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808009100/rz2200sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009100/rz2200Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the financial support of the National Natural Science Foundation of China.

supplementary crystallographic information

Comment

Recent interest in substituted 1,2,4-triazoles has arisen in part from their transition metal complexes with intriguing structures and specific magnetic properties (Garcia et al., 1997; Kahn & Martinez, 1998; Moliner et al., 2001; Fujigaya et al., 2003). In addition, many compounds containing a 1,2,4-triazole unit display a broad range of biological and pharmacological activities, finding application as anti-inflammatory (Tozkoparan et al., 2000), antitumour (Demirbs & Ugurluoglu Demirbas, 2002), analgesic (Turan-Zitouni et al., 1999), antibacterial and antiviral agents (Cornelissen et al., 1992). In a continuation of our interest in the chemical and pharmacological properties of triazole derivatives, we have synthesized the title compound and report here its crystal structure.

The molecular structure and the atom-numbering scheme of the title compound are shown in Fig. 1. In the molecule, all bond lengths and angles are within normal ranges and comparable with the reported values (Atalay et al., 2003; Zhu et al., 2000). In the triazole ring, the N2?C1 and N1?C2 bonds display double-bond character, with bond distances of 1.288 (6) and 1.313 (6) Å, respectively. The 1,2,4-triazole ring is strictly planar (maximum displacement 0.006 (5) Å for C2) and forms a dihedral angle of 5.77 (16) °. The crystal packing is stabilized by an intermolecular C—H···N hydrogen bonding interaction (Table 1).

Experimental

A mixture of 4-amino-l,2,4-triazole (0.88 g, 10 mmol) and 4-(diethylamino)benzaldehyde (1.77 g, 10 mmol), which was prepared by standard procedures (Brasselet et al., 1999), was dissolved in ethanol (180 ml) and stirred for 1 h. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the ethanol solution.

Refinement

The H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C13H17N5F000 = 520
Mr = 243.32Dx = 1.222 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 870 reflections
a = 7.740 (3) Åθ = 2.5–20.5º
b = 9.238 (4) ŵ = 0.08 mm1
c = 18.497 (7) ÅT = 293 (2) K
V = 1322.5 (9) Å3Block, yellow
Z = 40.37 × 0.35 × 0.11 mm

Data collection

Bruker APEX2 CCD area-detector diffractometer1359 independent reflections
Radiation source: fine-focus sealed tube895 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.075
T = 293(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.972, Tmax = 0.992k = −10→10
6650 measured reflectionsl = −21→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.131  w = 1/[σ2(Fo2) + (0.0187P)2 + 0.429P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1359 reflectionsΔρmax = 0.19 e Å3
165 parametersΔρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.0028 (7)0.8829 (5)−0.2061 (3)0.0777 (15)
H11.06150.8029−0.22410.093*
C20.8502 (7)1.0221 (5)−0.1387 (3)0.0888 (17)
H20.78241.0569−0.10100.107*
C30.9580 (6)0.6644 (4)−0.0936 (2)0.0632 (12)
H31.01400.6437−0.13680.076*
C40.9482 (6)0.5533 (4)−0.0388 (2)0.0562 (11)
C50.8680 (7)0.5730 (4)0.0283 (2)0.0667 (13)
H50.81500.66110.03840.080*
C60.8654 (6)0.4652 (4)0.0798 (2)0.0629 (13)
H60.80850.48150.12340.076*
C70.9468 (6)0.3314 (4)0.0680 (2)0.0582 (11)
C81.0235 (6)0.3114 (4)−0.0006 (2)0.0635 (12)
H81.07460.2231−0.01170.076*
C91.0236 (6)0.4195 (4)−0.0505 (2)0.0642 (12)
H91.07700.4026−0.09480.077*
C101.0615 (7)0.0993 (4)0.1119 (2)0.0684 (13)
H10A1.10770.07460.15910.082*
H10B1.15830.12400.08100.082*
C110.9734 (7)−0.0308 (4)0.0814 (3)0.0824 (15)
H11A0.8749−0.05460.11060.124*
H11B1.0523−0.11100.08090.124*
H11C0.9362−0.01060.03290.124*
C120.8512 (7)0.2348 (5)0.1858 (2)0.0754 (14)
H12A0.81450.13830.19970.091*
H12B0.74830.29170.17650.091*
C130.9488 (9)0.3017 (6)0.2477 (3)0.112 (2)
H13A1.04640.24210.25960.168*
H13B0.87420.30940.28900.168*
H13C0.98820.39640.23410.168*
N10.8934 (7)1.0979 (5)−0.1959 (3)0.1007 (15)
N20.9902 (7)1.0065 (5)−0.2379 (2)0.0907 (14)
N30.9164 (5)0.8878 (4)−0.1417 (2)0.0651 (10)
N40.8933 (5)0.7886 (4)−0.08490 (19)0.0679 (11)
N50.9521 (5)0.2252 (3)0.11934 (19)0.0654 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.109 (5)0.067 (3)0.057 (3)−0.009 (3)−0.003 (3)−0.004 (2)
C20.103 (5)0.079 (3)0.084 (4)0.022 (3)0.012 (3)0.010 (3)
C30.077 (3)0.069 (3)0.044 (3)−0.002 (3)0.002 (2)−0.001 (2)
C40.065 (3)0.057 (2)0.047 (2)−0.003 (2)0.001 (2)−0.0034 (19)
C50.085 (4)0.056 (2)0.059 (3)0.005 (2)0.006 (2)−0.008 (2)
C60.081 (4)0.062 (3)0.045 (3)0.005 (2)0.012 (2)−0.004 (2)
C70.064 (3)0.061 (2)0.049 (3)−0.006 (2)0.002 (2)−0.005 (2)
C80.075 (3)0.060 (2)0.056 (3)0.007 (2)0.006 (2)−0.004 (2)
C90.068 (3)0.069 (3)0.055 (3)0.001 (2)0.010 (2)−0.003 (2)
C100.079 (3)0.069 (3)0.057 (3)0.010 (3)0.001 (2)0.010 (2)
C110.097 (4)0.073 (3)0.077 (4)0.008 (3)−0.006 (3)−0.003 (3)
C120.092 (4)0.077 (3)0.058 (3)−0.008 (3)0.011 (3)−0.001 (2)
C130.143 (6)0.140 (4)0.053 (3)−0.027 (5)0.005 (4)−0.024 (3)
N10.117 (4)0.082 (3)0.104 (4)0.009 (3)0.003 (3)0.025 (3)
N20.125 (4)0.078 (3)0.070 (3)−0.016 (3)−0.002 (3)0.012 (2)
N30.081 (3)0.061 (2)0.054 (2)−0.002 (2)0.000 (2)0.0043 (18)
N40.087 (3)0.061 (2)0.056 (2)0.002 (2)0.002 (2)0.0061 (19)
N50.081 (3)0.067 (2)0.049 (2)0.005 (2)0.009 (2)0.0040 (18)

Geometric parameters (Å, °)

C1—N21.288 (6)C8—H80.9300
C1—N31.366 (6)C9—H90.9300
C1—H10.9300C10—N51.445 (5)
C2—N11.313 (6)C10—C111.493 (6)
C2—N31.344 (5)C10—H10A0.9700
C2—H20.9300C10—H10B0.9700
C3—N41.262 (5)C11—H11A0.9600
C3—C41.444 (5)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C91.384 (6)C12—N51.459 (6)
C4—C51.400 (6)C12—C131.505 (7)
C5—C61.378 (6)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—C71.405 (5)C13—H13A0.9600
C6—H60.9300C13—H13B0.9600
C7—N51.366 (5)C13—H13C0.9600
C7—C81.412 (6)N1—N21.369 (6)
C8—C91.361 (5)N3—N41.406 (4)
N2—C1—N3109.4 (5)N5—C10—H10B108.6
N2—C1—H1125.3C11—C10—H10B108.6
N3—C1—H1125.3H10A—C10—H10B107.6
N1—C2—N3111.2 (5)C10—C11—H11A109.5
N1—C2—H2124.4C10—C11—H11B109.5
N3—C2—H2124.4H11A—C11—H11B109.5
N4—C3—C4122.4 (4)C10—C11—H11C109.5
N4—C3—H3118.8H11A—C11—H11C109.5
C4—C3—H3118.8H11B—C11—H11C109.5
C9—C4—C5116.2 (4)N5—C12—C13113.4 (4)
C9—C4—C3120.2 (4)N5—C12—H12A108.9
C5—C4—C3123.6 (4)C13—C12—H12A108.9
C6—C5—C4121.7 (4)N5—C12—H12B108.9
C6—C5—H5119.1C13—C12—H12B108.9
C4—C5—H5119.1H12A—C12—H12B107.7
C5—C6—C7121.4 (4)C12—C13—H13A109.5
C5—C6—H6119.3C12—C13—H13B109.5
C7—C6—H6119.3H13A—C13—H13B109.5
N5—C7—C6122.5 (4)C12—C13—H13C109.5
N5—C7—C8121.2 (4)H13A—C13—H13C109.5
C6—C7—C8116.3 (4)H13B—C13—H13C109.5
C9—C8—C7121.0 (4)C2—N1—N2105.5 (4)
C9—C8—H8119.5C1—N2—N1109.2 (5)
C7—C8—H8119.5C2—N3—C1104.7 (4)
C8—C9—C4123.3 (4)C2—N3—N4121.5 (4)
C8—C9—H9118.4C1—N3—N4133.8 (4)
C4—C9—H9118.4C3—N4—N3116.6 (4)
N5—C10—C11114.6 (4)C7—N5—C10121.9 (3)
N5—C10—H10A108.6C7—N5—C12121.8 (4)
C11—C10—H10A108.6C10—N5—C12116.3 (3)
N4—C3—C4—C9−179.0 (5)N1—C2—N3—C1−1.1 (6)
N4—C3—C4—C5−0.4 (7)N1—C2—N3—N4177.3 (4)
C9—C4—C5—C60.4 (7)N2—C1—N3—C21.0 (6)
C3—C4—C5—C6−178.3 (4)N2—C1—N3—N4−177.2 (4)
C4—C5—C6—C71.5 (7)C4—C3—N4—N3178.2 (4)
C5—C6—C7—N5177.2 (4)C2—N3—N4—C3178.8 (5)
C5—C6—C7—C8−3.0 (7)C1—N3—N4—C3−3.3 (7)
N5—C7—C8—C9−177.5 (4)C6—C7—N5—C10−168.6 (4)
C6—C7—C8—C92.7 (7)C8—C7—N5—C1011.6 (6)
C7—C8—C9—C4−1.0 (7)C6—C7—N5—C129.5 (6)
C5—C4—C9—C8−0.6 (7)C8—C7—N5—C12−170.2 (4)
C3—C4—C9—C8178.1 (4)C11—C10—N5—C7−96.1 (5)
N3—C2—N1—N20.8 (7)C11—C10—N5—C1285.7 (5)
N3—C1—N2—N1−0.5 (6)C13—C12—N5—C7−92.9 (5)
C2—N1—N2—C1−0.2 (7)C13—C12—N5—C1085.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···N1i0.932.433.296 (7)155

Symmetry codes: (i) −x+2, y−1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2200).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Atalay, Ş., Yavuz, M., Bekircan, O., Ağar, A. & Şaşmaz, S. (2003). Acta Cryst. E59, o1528–o1529.
  • Brasselet, S., Cherioux, F., Audebert, P. & Zyss, J. (1999). Chem. Mater.11, 1915–1920.
  • Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cornelissen, J. P., van Diemen, J. H., Groeneveld, L. R., Haasnoot, J. G., Spek, A. L. & Reedijk, J. (1992). Inorg. Chem.31, 198–202.
  • Demirbs, N. & Ugurluoglu Demirbas, A. (2002). Bioorg. Med. Chem.10, 3717–3723. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fujigaya, T., Jiang, D. L. & Aida, T. (2003). J. Am. Chem. Soc.125, 14690–14691. [PubMed]
  • Garcia, Y., van Koningsbruggen, P. J., Codjovi, E., Lapouyade, R., Kahn, O. & Rabardel, L. (1997). J. Mater. Chem.7, 857–858.
  • Kahn, O. & Martinez, C. J. (1998). Science, 279, 44–48.
  • Moliner, N., Gaspar, A. B., Munoz, M. C., Niel, V., Cano, J. & Real, J. A. (2001). Inorg. Chem.40, 3986–3991. [PubMed]
  • Petek, H., Şenel, İ., Bekircan, O., Ağar, E. & Şaşmaz, S. (2004). Acta Cryst. E60, o831–o832.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tozkoparan, B., Gökhan, N., Aktay, G., Yesilada, E. & Ertan, M. (2000). Eur. J. Med. Chem.35, 743–750. [PubMed]
  • Turan-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Killic, F. S. (1999). Farmaco, 54, 218–223. [PubMed]
  • Zhu, D.-R., Xu, Y., Liu, Y.-J., Song, Y., Zhang, Y. & You, X.-Z. (2000). Acta Cryst. C56, 242–243. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography