PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1093.
Published online 2008 May 17. doi:  10.1107/S1600536808014189
PMCID: PMC2961418

2-(3,4,5-Trimethoxy­phen­yl)-1H-benzimidazole

Abstract

In the title compound, C16H16N2O3, the dihedral angle between the mean planes of the aromatic ring systems is 30.90 (15)°. In the crystal structure, the mol­ecules form [010] chains by way of N—H(...)N hydrogen bonds.

Related literature

For a related structure, see: Rashid et al. (2007 [triangle]). For background, see: Gupta et al. (2004 [triangle]). For reference structural data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1093-scheme1.jpg

Experimental

Crystal data

  • C16H16N2O3
  • M r = 284.31
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1093-efi3.jpg
  • a = 8.2270 (16) Å
  • b = 9.5750 (19) Å
  • c = 37.375 (7) Å
  • V = 2944.2 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 295 (2) K
  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Enraf-Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 5421 measured reflections
  • 2733 independent reflections
  • 960 reflections with I > 2σ(I)
  • R int = 0.085
  • 3 standard reflections every 100 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.143
  • S = 0.94
  • 2733 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014189/bt2706sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014189/bt2706Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound, (I), (Fig. 1), complements substituted imidazoles with biological properties (Gupta et al., 2004). The dihedral angle between the N1/N2/C10—C16 and C4—C9 aromatic ring planes in (I) is 30.90 (15)°. This twisting may help to relieve steric strain between H1a and H5a (H1a···H5a = 2.32 Å) and a number of related 2-phenyl-1H-benzimidazoles show a similar dihedral angle between the adjacent ring planes (Rashid et al., 2007). Atoms C1, C2 and C3 in (I) are displaced from the mean plane of the C4—C9 ring by 1.010 (5) Å, 0.115 (5)Å and 0.257 (4) Å, respectively. Otherwise, the geometry of (I) may be regarded as normal (Allen et al., 1987).

In the crystal of (I), an N—H···N hydrogen bond (Table 1) links the molecules into chains propagating in [010] (Fig. 2). There are no aromatic π-π stacking interactions in (I) as the closest centroid-centroid separation of aromatic rings is greater than 5.11 Å, which contrasts with the situation in 2-(4-fluorophenyl)-1H-benzimidazole (Rashid et al., 2007) in which both N—H···N and π-π stacking help to establish the packing.

Experimental

1,2-Phenylenediamine (2 mmol, 216 mg) and 3,4,5-trimethoxybenzaldehyde (2 mmol, 392 mg) were dissolved in methanol (25 ml) at 323 K. The mixture was stirred for 30 min to give a colourless solution. After the solution had been allowed to stand in air for 3 d, colourless blocks of (I) formed, in about 74% yield, on slow evaporation of the solvent at room temperature.

Refinement

The H atoms were geometrically placed (C—H = 0.93–0.96 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Figures

Fig. 1.
View of the molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms).
Fig. 2.
Fragment of a [010] hydrogen bonded chain of molecules in the crystal of (I). Symmetry code: (i) 3/2 - x, y - 1/2, z.

Crystal data

C16H16N2O3F000 = 1200
Mr = 284.31Dx = 1.283 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 8.2270 (16) Åθ = 4–14º
b = 9.5750 (19) ŵ = 0.09 mm1
c = 37.375 (7) ÅT = 295 (2) K
V = 2944.2 (10) Å3Block, colourless
Z = 80.25 × 0.20 × 0.18 mm

Data collection

Enraf-Nonius CAD-4 diffractometerRint = 0.085
Radiation source: fine-focus sealed tubeθmax = 25.5º
Monochromator: graphiteθmin = 1.1º
T = 295(2) Kh = −9→0
ω scansk = −11→0
Absorption correction: nonel = −44→44
5421 measured reflections3 standard reflections
2733 independent reflections every 100 reflections
960 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.143  w = 1/[σ2(Fo2) + (0.0483P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
2733 reflectionsΔρmax = 0.21 e Å3
190 parametersΔρmin = −0.20 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.2012 (3)0.2286 (3)0.03723 (7)0.0646 (9)
O20.9428 (3)0.3940 (3)0.03507 (7)0.0591 (9)
O31.2638 (3)0.0641 (3)0.09566 (8)0.0609 (8)
N10.7160 (3)0.0683 (3)0.16552 (8)0.0387 (8)
H1A0.7705−0.00740.16230.046*
N20.6374 (3)0.2921 (3)0.15868 (8)0.0406 (8)
C11.3578 (5)0.2888 (6)0.04310 (12)0.0800 (15)
H1B1.41970.28520.02130.120*
H1C1.41340.23750.06150.120*
H1D1.34550.38430.05050.120*
C20.8079 (6)0.4863 (5)0.03285 (12)0.0772 (15)
H2B0.81530.54020.01120.116*
H2C0.80830.54790.05310.116*
H2D0.70890.43320.03270.116*
C31.3004 (5)−0.0119 (5)0.12749 (11)0.0772 (15)
H3A1.4032−0.05810.12480.116*
H3B1.2171−0.08010.13170.116*
H3C1.30550.05130.14740.116*
C41.1200 (5)0.1366 (4)0.09509 (12)0.0446 (11)
C51.0041 (5)0.1274 (4)0.12166 (11)0.0429 (10)
H5A1.02030.06720.14090.052*
C60.8635 (4)0.2074 (4)0.11992 (10)0.0368 (9)
C70.8382 (4)0.2994 (4)0.09110 (10)0.0397 (10)
H7A0.74480.35400.09010.048*
C80.9539 (5)0.3074 (4)0.06435 (11)0.0422 (10)
C91.0951 (4)0.2256 (4)0.06576 (10)0.0446 (11)
C100.7391 (5)0.1932 (4)0.14767 (9)0.0374 (9)
C110.5910 (4)0.0866 (4)0.18929 (10)0.0338 (9)
C120.5161 (5)−0.0025 (4)0.21332 (10)0.0453 (11)
H12A0.5493−0.09480.21580.054*
C130.3906 (5)0.0513 (4)0.23340 (11)0.0532 (11)
H13A0.3387−0.00550.25000.064*
C140.3390 (5)0.1916 (5)0.22919 (12)0.0541 (11)
H14A0.25220.22420.24280.065*
C150.4139 (4)0.2808 (4)0.20549 (10)0.0508 (11)
H15A0.38010.37300.20310.061*
C160.5427 (4)0.2280 (4)0.18510 (10)0.0359 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0561 (19)0.085 (2)0.0526 (18)−0.0022 (18)0.0156 (16)−0.0106 (18)
O20.061 (2)0.068 (2)0.048 (2)0.0042 (18)0.0086 (16)0.0139 (18)
O30.0506 (18)0.0599 (19)0.072 (2)0.0141 (17)0.0108 (18)0.0009 (18)
N10.0409 (19)0.0233 (17)0.052 (2)0.0028 (16)0.0007 (18)0.0074 (17)
N20.044 (2)0.0254 (17)0.052 (2)−0.0002 (18)0.0067 (17)−0.0009 (19)
C10.059 (3)0.100 (4)0.081 (3)−0.011 (3)0.019 (3)−0.009 (3)
C20.085 (4)0.074 (3)0.073 (4)0.019 (3)0.007 (3)0.029 (3)
C30.067 (3)0.096 (4)0.069 (3)0.034 (3)−0.013 (3)−0.004 (3)
C40.034 (2)0.042 (3)0.057 (3)0.004 (2)0.004 (2)−0.008 (2)
C50.042 (2)0.031 (2)0.056 (3)−0.001 (2)0.005 (2)0.002 (2)
C60.038 (2)0.030 (2)0.042 (2)−0.002 (2)0.005 (2)−0.001 (2)
C70.036 (2)0.032 (2)0.051 (3)0.000 (2)0.002 (2)−0.003 (2)
C80.045 (3)0.042 (2)0.040 (2)−0.003 (2)−0.001 (2)−0.003 (2)
C90.041 (3)0.053 (3)0.040 (2)−0.006 (2)0.007 (2)−0.004 (2)
C100.038 (2)0.027 (2)0.047 (2)−0.003 (2)−0.006 (2)0.003 (2)
C110.033 (2)0.030 (2)0.038 (2)−0.0061 (18)0.005 (2)−0.003 (2)
C120.047 (3)0.034 (2)0.054 (3)−0.007 (2)−0.002 (2)0.006 (2)
C130.054 (3)0.053 (3)0.053 (3)−0.010 (2)0.005 (2)0.010 (3)
C140.050 (3)0.051 (3)0.062 (3)−0.002 (3)0.017 (2)−0.005 (3)
C150.052 (3)0.037 (3)0.064 (3)0.008 (2)0.012 (2)−0.004 (2)
C160.040 (2)0.023 (2)0.044 (2)−0.0011 (19)0.001 (2)−0.001 (2)

Geometric parameters (Å, °)

C9—O11.379 (4)C4—C51.379 (5)
C1—O11.428 (5)C4—C91.403 (5)
C8—O21.377 (4)C5—C61.389 (5)
C2—O21.422 (4)C5—H5A0.9300
C4—O31.372 (4)C6—C71.407 (5)
C3—O31.427 (4)C6—C101.464 (5)
N1—C111.371 (4)C7—C81.383 (5)
N1—C101.383 (4)C7—H7A0.9300
N1—H1A0.8600C8—C91.401 (5)
N2—C101.329 (4)C11—C121.383 (5)
N2—C161.400 (4)C11—C161.419 (5)
C1—H1B0.9600C12—C131.376 (5)
C1—H1C0.9600C12—H12A0.9300
C1—H1D0.9600C13—C141.418 (5)
C2—H2B0.9600C13—H13A0.9300
C2—H2C0.9600C14—C151.376 (5)
C2—H2D0.9600C14—H14A0.9300
C3—H3A0.9600C15—C161.400 (5)
C3—H3B0.9600C15—H15A0.9300
C3—H3C0.9600
C9—O1—C1117.4 (3)C5—C6—C10119.9 (4)
C8—O2—C2118.2 (3)C7—C6—C10119.8 (3)
C4—O3—C3116.9 (3)C8—C7—C6119.1 (4)
C11—N1—C10107.7 (3)C8—C7—H7A120.5
C11—N1—H1A126.1C6—C7—H7A120.5
C10—N1—H1A126.1O2—C8—C7124.2 (4)
C10—N2—C16104.8 (3)O2—C8—C9114.9 (4)
O1—C1—H1B109.5C7—C8—C9120.8 (4)
O1—C1—H1C109.5O1—C9—C8118.9 (4)
H1B—C1—H1C109.5O1—C9—C4121.6 (4)
O1—C1—H1D109.5C8—C9—C4119.3 (4)
H1B—C1—H1D109.5N2—C10—N1112.4 (3)
H1C—C1—H1D109.5N2—C10—C6126.4 (3)
O2—C2—H2B109.5N1—C10—C6121.2 (3)
O2—C2—H2C109.5N1—C11—C12132.5 (4)
H2B—C2—H2C109.5N1—C11—C16105.1 (3)
O2—C2—H2D109.5C12—C11—C16122.4 (4)
H2B—C2—H2D109.5C13—C12—C11117.2 (4)
H2C—C2—H2D109.5C13—C12—H12A121.4
O3—C3—H3A109.5C11—C12—H12A121.4
O3—C3—H3B109.5C12—C13—C14121.3 (4)
H3A—C3—H3B109.5C12—C13—H13A119.4
O3—C3—H3C109.5C14—C13—H13A119.4
H3A—C3—H3C109.5C15—C14—C13121.7 (4)
H3B—C3—H3C109.5C15—C14—H14A119.2
O3—C4—C5123.5 (4)C13—C14—H14A119.2
O3—C4—C9116.4 (4)C14—C15—C16117.7 (4)
C5—C4—C9120.0 (4)C14—C15—H15A121.1
C4—C5—C6120.4 (4)C16—C15—H15A121.1
C4—C5—H5A119.8N2—C16—C15130.3 (3)
C6—C5—H5A119.8N2—C16—C11109.9 (3)
C5—C6—C7120.3 (3)C15—C16—C11119.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.072.918 (4)169

Symmetry codes: (i) −x+3/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2706).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gupta, P., Hameed, S. & Jain, R. (2004). Eur. J. Med. Chem.39, 805–814. [PubMed]
  • Rashid, N., Tahir, M. K., Kanwal, S., Yusof, N. M. & Yamin, B. M. (2007). Acta Cryst. E63, o1402–o1403.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography