PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m808.
Published online 2008 May 14. doi:  10.1107/S1600536808013688
PMCID: PMC2961416

Poly[aqua­[μ3-5-(2-carboxyl­atophen­yl)-1H-tetra­zolato]zinc(II)]

Abstract

The title coordination polymer, [Zn(C8H4N4O2)(H2O)]n, was prepared by the hydro­thermal reaction of zinc nitrate and 2-(1H-tetra­zol-5-yl)benzoic acid. Two types of coordinated zinc cations exist in the structure. One is tetra­hedrally coordinated by two O and two N from two ligands, the other is octa­hedrally coordinated by two N and two O from two ligands at equatorial sites and by two O atoms of water mol­ecules at axial sites, resulting in a two-dimensional framework. The crystal structure is stabilized by intra­molecular O—H(...)O and O—H(...)N hydrogen bonds.

Related literature

For the chemistry of tetra­zoles, see: Xiong et al. (2002 [triangle]); Xue et al. (2002 [triangle]); Dunica et al. (1991 [triangle]); Wang et al. (2005 [triangle]); Wittenberger et al. (1993 [triangle]); Hu et al. (2007 [triangle]). For the crystal structure of a related compound, see: Li et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m808-scheme1.jpg

Experimental

Crystal data

  • [Zn(C8H4N4O2)(H2O)]
  • M r = 271.56
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m808-efi1.jpg
  • a = 19.696 (8) Å
  • b = 7.1340 (18) Å
  • c = 14.932 (6) Å
  • β = 114.39 (2)°
  • V = 1910.9 (12) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.57 mm−1
  • T = 293 (2) K
  • 0.07 × 0.07 × 0.06 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.835, T max = 0.860
  • 9320 measured reflections
  • 2173 independent reflections
  • 1623 reflections with I > 2σ(I)
  • R int = 0.085

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.112
  • S = 1.08
  • 2173 reflections
  • 147 parameters
  • H-atom parameters constrained
  • Δρmax = 0.63 e Å−3
  • Δρmin = −0.60 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013688/rz2210sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013688/rz2210Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant from Southeast University to ZRQ.

supplementary crystallographic information

Comment

Coordination frameworks have received much attention over the past decade because of their potential applications. Multifunctional organic ligands are necessary to construct such frameworks. 2-(1H-Tetrazol-5-yl)benzoic acid is a ligand with two functional groups, a carboxylate group and a tetrazole ring. Tetrazole compounds have a wide range of applications in coordination chemistry, medicinal chemistry and material science (Hu, et al., 2007; Xiong, et al., 2002; Xue, et al., 2002; Wang, et al., 2005; Dunica, et al., 1991; Wittenberger & Donner, 1993). We report here the crystal structure of the title compound, which was obtained by the hydrothermal reaction of zinc nitrate and 2-(1H-tetrazol-5-yl)benzoic acid.

In the structure of the title compound, two types of coordinated zinc cations exist (Fig. 1). Zn1 is tetrahedrally coordinated by two O and two N from two ligands, while Zn2 is octahedrally coordinated, with two N and two O from two ligands at equatorial sites and two O atoms of H2O molecules at axial sites, resulting in a two-dimensional framework (Fig 2). Bond lengths and angles in the compound are within normal ranges (Li et al., 2005). The crystal structure is stabilized by intramolecular O—H···O and O—H···N hydrogen bonds (Table 1).

Experimental

A mixture of Zn(NO3)2 (0.2 mmol) and 2-(1H-tetrazol-5-yl)benzoic acid (0.2 mmol) in H2O (4 ml) was heated in Pyrex tube at 100°C for two days. After slowly cooling down to room temperature over a period of 12 h, colourless crystals of the title compound suitable for diffraction were isolated.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on their parent atoms, with C—H = 0.93 Å, O—H = 0.81Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(O).

Figures

Fig. 1.
A partial packing diagram of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity. [Symmetry codes: (A) 2-x, -y, 1-z; (B) x, y-1, z; (C) 2-x, y-1, 1/2-z; (D) 2-x, y, 1/2-z].
Fig. 2.
Packing diagram of the title compound, showing the structure along the b axis. H atoms are omitted for clarity.

Crystal data

[Zn(C8H4N4O2)(H2O)]F000 = 1088.0
Mr = 271.56Dx = 1.888 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1979 reflections
a = 19.696 (8) Åθ = 3.1–27.5º
b = 7.1340 (18) ŵ = 2.57 mm1
c = 14.932 (6) ÅT = 293 (2) K
β = 114.39 (2)ºBlock, colourless
V = 1910.9 (12) Å30.07 × 0.07 × 0.06 mm
Z = 8

Data collection

Rigaku SCXmini diffractometer2173 independent reflections
Radiation source: fine-focus sealed tube1623 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.085
Detector resolution: 13.6612 pixels mm-1θmax = 27.5º
T = 293(2) Kθmin = 3.1º
ω scansh = −25→25
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)k = −9→9
Tmin = 0.835, Tmax = 0.860l = −19→19
9320 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.112  w = 1/[σ2(Fo2) + (0.0929P)2 + 0.0509P] whereP = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2173 reflectionsΔρmax = 0.63 e Å3
147 parametersΔρmin = −0.60 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn11.0000−0.31787 (9)0.25000.0245 (2)
Zn21.00000.00000.50000.0242 (2)
C10.9761 (2)0.3503 (5)0.3649 (3)0.0202 (8)
C20.8990 (2)0.3170 (6)0.2905 (3)0.0213 (8)
C30.8527 (2)0.4731 (6)0.2629 (3)0.0289 (10)
H30.86930.58590.29590.035*
C40.7821 (3)0.4630 (6)0.1866 (4)0.0383 (12)
H40.75140.56810.16930.046*
C50.7577 (3)0.2978 (7)0.1370 (4)0.0410 (12)
H50.71040.29100.08580.049*
C60.8032 (3)0.1407 (6)0.1630 (3)0.0339 (11)
H60.78640.02990.12790.041*
C70.8733 (2)0.1459 (6)0.2405 (3)0.0222 (9)
C80.9165 (2)−0.0327 (5)0.2671 (3)0.0217 (9)
N11.0151 (2)0.2573 (5)0.4466 (2)0.0241 (8)
N21.0788 (2)0.3533 (5)0.4939 (3)0.0295 (9)
N31.0792 (2)0.4999 (5)0.4424 (3)0.0280 (8)
N41.01491 (19)0.5018 (4)0.3598 (2)0.0220 (7)
O10.91662 (17)−0.1326 (4)0.1958 (2)0.0270 (7)
O20.94994 (17)−0.0846 (4)0.3536 (2)0.0314 (7)
O1W0.89412 (16)0.0990 (4)0.4984 (2)0.0322 (7)
H1W0.89130.06810.54970.048*
H2W0.88720.20610.50350.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0335 (4)0.0167 (3)0.0215 (4)0.0000.0097 (3)0.000
Zn20.0341 (4)0.0186 (4)0.0186 (4)−0.0009 (3)0.0097 (3)0.0027 (3)
C10.026 (2)0.0153 (19)0.021 (2)−0.0018 (17)0.0104 (17)0.0000 (16)
C20.021 (2)0.022 (2)0.0183 (19)−0.0016 (17)0.0057 (17)0.0025 (16)
C30.032 (2)0.023 (2)0.030 (2)0.0042 (19)0.011 (2)0.0001 (18)
C40.031 (3)0.033 (3)0.045 (3)0.013 (2)0.009 (2)0.003 (2)
C50.026 (2)0.043 (3)0.039 (3)0.004 (2)−0.002 (2)−0.001 (2)
C60.029 (2)0.029 (2)0.035 (3)0.001 (2)0.004 (2)−0.004 (2)
C70.024 (2)0.019 (2)0.022 (2)0.0019 (17)0.0094 (18)0.0021 (16)
C80.023 (2)0.021 (2)0.021 (2)−0.0050 (16)0.0088 (18)−0.0013 (16)
N10.032 (2)0.0186 (17)0.0189 (17)−0.0044 (15)0.0083 (16)0.0033 (14)
N20.029 (2)0.0235 (19)0.030 (2)−0.0030 (16)0.0062 (17)0.0079 (16)
N30.031 (2)0.0223 (19)0.0235 (19)−0.0053 (15)0.0041 (17)0.0025 (14)
N40.0271 (18)0.0168 (17)0.0210 (18)−0.0020 (14)0.0088 (15)0.0001 (13)
O10.0390 (18)0.0226 (15)0.0179 (14)0.0056 (13)0.0101 (13)−0.0029 (12)
O20.048 (2)0.0232 (16)0.0191 (15)0.0050 (14)0.0100 (15)−0.0004 (12)
O1W0.0385 (18)0.0309 (17)0.0284 (17)0.0003 (15)0.0150 (15)−0.0012 (14)

Geometric parameters (Å, °)

Zn1—O1i2.000 (3)C3—H30.9300
Zn1—O12.000 (3)C4—C51.369 (6)
Zn1—N4ii2.008 (3)C4—H40.9300
Zn1—N4iii2.008 (3)C5—C61.387 (6)
Zn2—N12.072 (3)C5—H50.9300
Zn2—N1iv2.072 (3)C6—C71.389 (6)
Zn2—O2iv2.082 (3)C6—H60.9300
Zn2—O22.082 (3)C7—C81.491 (5)
Zn2—O1Wiv2.193 (3)C8—O21.240 (5)
Zn2—O1W2.193 (3)C8—O11.281 (5)
C1—N11.321 (5)N1—N21.345 (5)
C1—N41.343 (5)N2—N31.300 (4)
C1—C21.484 (5)N3—N41.353 (5)
C2—C31.390 (5)N4—Zn1v2.008 (3)
C2—C71.411 (5)O1W—H1W0.8200
C3—C41.389 (6)O1W—H2W0.7851
O1i—Zn1—O197.27 (17)C2—C3—H3119.5
O1i—Zn1—N4ii124.90 (13)C5—C4—C3119.8 (4)
O1—Zn1—N4ii105.93 (12)C5—C4—H4120.1
O1i—Zn1—N4iii105.93 (12)C3—C4—H4120.1
O1—Zn1—N4iii124.90 (13)C4—C5—C6120.2 (4)
N4ii—Zn1—N4iii100.34 (19)C4—C5—H5119.9
N1—Zn2—N1iv180.000 (1)C6—C5—H5119.9
N1—Zn2—O2iv93.81 (13)C5—C6—C7121.1 (4)
N1iv—Zn2—O2iv86.19 (13)C5—C6—H6119.4
N1—Zn2—O286.19 (13)C7—C6—H6119.4
N1iv—Zn2—O293.81 (13)C6—C7—C2118.7 (4)
O2iv—Zn2—O2180.000 (1)C6—C7—C8117.4 (4)
N1—Zn2—O1Wiv90.11 (13)C2—C7—C8123.9 (3)
N1iv—Zn2—O1Wiv89.89 (13)O2—C8—O1121.1 (4)
O2iv—Zn2—O1Wiv92.66 (12)O2—C8—C7122.1 (4)
O2—Zn2—O1Wiv87.34 (12)O1—C8—C7116.8 (4)
N1—Zn2—O1W89.89 (13)C1—N1—N2106.9 (3)
N1iv—Zn2—O1W90.11 (13)C1—N1—Zn2132.8 (3)
O2iv—Zn2—O1W87.34 (12)N2—N1—Zn2120.0 (3)
O2—Zn2—O1W92.66 (12)N3—N2—N1109.3 (3)
O1Wiv—Zn2—O1W180.000 (1)N2—N3—N4108.4 (3)
N1—C1—N4109.2 (4)C1—N4—N3106.3 (3)
N1—C1—C2129.5 (4)C1—N4—Zn1v131.8 (3)
N4—C1—C2121.1 (3)N3—N4—Zn1v121.1 (3)
C3—C2—C7119.2 (4)C8—O1—Zn1108.4 (3)
C3—C2—C1115.9 (4)C8—O2—Zn2145.6 (3)
C7—C2—C1124.5 (4)Zn2—O1W—H1W109.5
C4—C3—C2120.9 (4)Zn2—O1W—H2W121.0
C4—C3—H3119.5H1W—O1W—H2W95.2

Symmetry codes: (i) −x+2, y, −z+1/2; (ii) −x+2, y−1, −z+1/2; (iii) x, y−1, z; (iv) −x+2, −y, −z+1; (v) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1vi0.822.082.804 (4)147
O1W—H2W···N3vii0.792.252.976 (5)155

Symmetry codes: (vi) x, −y, z+1/2; (vii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2210).

References

  • Dunica, J. V., Pierce, M. E. & Santella, J. B. III (1991). J. Org. Chem.56, 2395–2400.
  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Hu, B., Xu, X.-B., Li, Y.-X. & Ye, H.-Y. (2007). Acta Cryst. E63, m2698.
  • Li, J.-T., Tao, J., Huang, R.-B. & Zhang, L.-S. (2005). Acta Cryst. E61, m984–m985.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem.44, 5278–5285. [PubMed]
  • Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem.58, 4139–4141.
  • Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed.41, 3800–3803. [PubMed]
  • Xue, X., Wang, X.-S., Wang, L.-Z., Xiong, R.-G., Abrahams, B. F., You, X.-Z., Xue, Z.-L. & Che, C.-M. (2002). Inorg. Chem.41, 3800–3803. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography