PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m847.
Published online 2008 May 30. doi:  10.1107/S1600536808015523
PMCID: PMC2961415

Aqua­(2-hydrazino-1,10-phenanthroline)nitratocopper(II) nitrate

Abstract

In the title mononuclear complex, [Cu(NO3)(C12H10N4)(H2O)]NO3, the CuII ion assumes a distorted square-pyramidal geometry. There is a π–π stacking inter­action between the five-membered ring containing the Cu atom and a pyridine ring of a neighboring complex [centroid–centroid distance = 3.567 (2) Å and a perpendicular distance of 3.394 Å]. The crystal structure also contains inter­molecular N—H(...)O, O—H(...)O and C—H(...)O hydrogen bonds, linking cations and anions. In addition, there is a short inter­molecular contact [2.784 (6) Å] between an O atom of the coordinated nitrate group and its symmetry-related atom.

Related literature

For related structures, see: Liu et al. (2008 [triangle]); Lewis et al. (1980 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m847-scheme1.jpg

Experimental

Crystal data

  • [Cu(NO3)(C12H10N4)(H2O)]NO3
  • M r = 415.82
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m847-efi1.jpg
  • a = 8.7175 (8) Å
  • b = 10.7746 (10) Å
  • c = 16.4725 (16) Å
  • β = 97.175 (2)°
  • V = 1535.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.48 mm−1
  • T = 298 (2) K
  • 0.50 × 0.20 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.525, T max = 0.843
  • 8857 measured reflections
  • 3329 independent reflections
  • 2735 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.112
  • S = 1.03
  • 3329 reflections
  • 235 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015523/wn2264sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015523/wn2264Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry (Liu et al., 2008), and although complexes with 2,9-dihydrazino-1,10-phenanthroline as ligand have been published (Lewis et al., 1980), to the best of our knowledge, no crystal structure of the title complex has been published.

Fig. 1 shows the structure, revealing that the Cu atom is in a distorted square-pyramidal environment, with atom O1 in the apical position. There is a single π-π stacking interaction involving symmetry-related 1,10-phenanthroline ligands, the relevant distances being Cg1···Cg2v = 3.567 (2) Å and Cg1···Cg2vperp = 3.394 Å and α = 3.76° [symmetry code: (v) -x, 1 - y, -z; Cg1 and Cg2 are the centroids of the Cu1/N5/N6/C8/C9 ring and N6/C7/C8/C10-C12 ring, respectively; Cg1···Cg21perp is the perpendicular distance from ring Cg1 to ring Cg2i; α is the dihedral angle between ring plane Cg1 and ring plane Cg2i]. There exists a short contact [2.784 (6) Å] between atom O3 and its symmetry-related atom O3ii [symmetry code: (ii) 1-x,-y,-z], as shown in Fig. 2 (double dashed lines). In addition, the crystal structure contains classical N—H..O and O—H···O hydrogen bonds, also non-classical C—H···O hydrogen bonds, as shown in Table 1 and Fig. 2. The π-π stacking interaction, the short contact between atom O3 and its symmetry-related atom O3ii and the hydrogen bonds stabilize the crystal structure.

Experimental

10 ml methanol solution of 2-hydrazino-1,10-phenanthroline (0.0105 g, 0.0576 mmol) was added to 5 ml aqueous solution of Cu(NO3)2.3H2O (0.0390 g, 0.161 mmol) and the mixture was stirred for a few minutes. Deep-green single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement

Oxygen-bound H atoms were located in a difference Fourier map, then placed in calculated positions with O—H = 0.84 and 0.85 Å and refined as riding with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 and 0.90 Å, and refined as riding with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
Structure of the title complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A view of the packing in the crystal structure. Short contacts between atom O3 and its symmetry-related atoms are shown as double dashed lines and hydrogen bonds as dashed lines.

Crystal data

[Cu(NO3)(C12H10N4)(H2O)]NO3F000 = 844
Mr = 415.82Dx = 1.799 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2442 reflections
a = 8.7175 (8) Åθ = 2.3–24.6º
b = 10.7746 (10) ŵ = 1.48 mm1
c = 16.4725 (16) ÅT = 298 (2) K
β = 97.175 (2)ºBlock, green
V = 1535.1 (2) Å30.50 × 0.20 × 0.12 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer3329 independent reflections
Radiation source: fine-focus sealed tube2735 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 298(2) Kθmax = 27.0º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.525, Tmax = 0.843k = −13→13
8857 measured reflectionsl = −12→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.112  w = 1/[σ2(Fo2) + (0.058P)2 + 0.4576P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
3329 reflectionsΔρmax = 0.70 e Å3
235 parametersΔρmin = −0.33 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1553 (4)0.3275 (3)−0.07122 (17)0.0395 (7)
C20.0545 (4)0.3975 (3)−0.12818 (19)0.0478 (8)
H2−0.00800.3581−0.17040.057*
C30.0507 (4)0.5226 (3)−0.1201 (2)0.0492 (8)
H3−0.01590.5689−0.15680.059*
C40.1460 (4)0.5839 (3)−0.05691 (19)0.0441 (8)
C50.1525 (5)0.7152 (3)−0.0411 (2)0.0539 (9)
H50.08860.7683−0.07450.065*
C60.2498 (4)0.7624 (3)0.0215 (2)0.0541 (9)
H60.25040.84770.03020.065*
C70.3518 (4)0.6866 (3)0.0746 (2)0.0459 (8)
C80.3481 (3)0.5572 (3)0.06060 (17)0.0377 (7)
C90.2440 (3)0.5098 (3)−0.00470 (18)0.0364 (6)
C100.5401 (4)0.5172 (3)0.1667 (2)0.0462 (8)
H100.60580.46200.19740.055*
C110.5497 (4)0.6440 (3)0.1859 (2)0.0550 (9)
H110.61900.67130.22970.066*
C120.4578 (5)0.7272 (3)0.1405 (2)0.0548 (9)
H120.46530.81130.15330.066*
Cu10.37741 (4)0.29261 (3)0.06801 (2)0.03598 (14)
N10.1698 (3)0.2036 (2)−0.07207 (16)0.0478 (7)
H10.12110.1587−0.11010.057*
N20.2703 (3)0.1510 (2)−0.00644 (15)0.0432 (6)
H2A0.34270.1045−0.02650.052*
H2B0.21600.10140.02350.052*
N30.5836 (3)0.1007 (3)0.13379 (17)0.0499 (7)
N40.8613 (3)0.0304 (2)0.83090 (17)0.0472 (7)
N50.2458 (3)0.3843 (2)−0.01228 (14)0.0362 (5)
N60.4397 (3)0.4735 (2)0.10578 (15)0.0376 (5)
O10.2264 (3)0.27432 (18)0.16726 (12)0.0440 (5)
H90.22730.19800.17840.066*
H130.27170.31280.20830.066*
O20.5464 (3)0.21509 (19)0.13917 (15)0.0516 (6)
O30.5139 (4)0.0349 (2)0.08196 (18)0.0770 (9)
O40.6890 (4)0.0598 (3)0.1787 (2)0.1068 (13)
O50.7508 (3)−0.0211 (2)0.79020 (18)0.0735 (8)
O60.9063 (3)0.1324 (2)0.80827 (14)0.0610 (7)
O70.9290 (3)−0.0178 (2)0.89371 (16)0.0627 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0392 (17)0.0383 (16)0.0423 (17)0.0019 (13)0.0106 (13)0.0020 (13)
C20.0441 (19)0.052 (2)0.0457 (18)0.0053 (15)0.0008 (14)0.0062 (15)
C30.0418 (19)0.057 (2)0.0492 (19)0.0118 (16)0.0085 (15)0.0152 (16)
C40.0469 (19)0.0369 (16)0.0527 (19)0.0104 (14)0.0224 (15)0.0106 (13)
C50.063 (2)0.0395 (18)0.062 (2)0.0131 (16)0.0210 (18)0.0150 (16)
C60.071 (3)0.0282 (16)0.069 (2)0.0072 (16)0.034 (2)0.0047 (15)
C70.058 (2)0.0293 (15)0.056 (2)−0.0025 (14)0.0284 (17)−0.0018 (13)
C80.0413 (17)0.0320 (15)0.0436 (16)−0.0005 (12)0.0199 (13)0.0007 (12)
C90.0404 (17)0.0297 (14)0.0416 (16)0.0044 (12)0.0149 (13)0.0045 (12)
C100.0457 (19)0.0491 (18)0.0451 (17)−0.0050 (15)0.0115 (14)−0.0034 (14)
C110.060 (2)0.054 (2)0.053 (2)−0.0171 (18)0.0127 (17)−0.0129 (17)
C120.070 (3)0.0332 (17)0.066 (2)−0.0128 (16)0.0264 (19)−0.0120 (15)
Cu10.0392 (2)0.0291 (2)0.0397 (2)0.00421 (14)0.00535 (15)0.00074 (14)
N10.0554 (17)0.0373 (14)0.0479 (16)0.0027 (12)−0.0051 (13)−0.0059 (11)
N20.0515 (17)0.0317 (13)0.0464 (14)0.0037 (11)0.0065 (12)−0.0001 (11)
N30.0537 (18)0.0477 (16)0.0474 (15)0.0124 (14)0.0022 (13)0.0019 (13)
N40.0568 (18)0.0386 (14)0.0483 (16)0.0009 (13)0.0148 (13)0.0022 (12)
N50.0394 (14)0.0306 (12)0.0390 (13)0.0036 (10)0.0061 (10)0.0011 (10)
N60.0409 (14)0.0326 (12)0.0412 (13)−0.0001 (11)0.0132 (11)−0.0014 (11)
O10.0505 (14)0.0375 (11)0.0447 (12)0.0008 (9)0.0091 (10)0.0001 (9)
O20.0519 (15)0.0406 (12)0.0600 (14)0.0120 (10)−0.0020 (11)−0.0063 (10)
O30.095 (2)0.0483 (14)0.0791 (19)0.0180 (14)−0.0225 (16)−0.0118 (14)
O40.108 (3)0.077 (2)0.119 (3)0.042 (2)−0.051 (2)−0.0025 (19)
O50.0673 (18)0.0551 (15)0.092 (2)−0.0193 (14)−0.0152 (15)0.0131 (14)
O60.0885 (19)0.0425 (13)0.0500 (13)−0.0200 (13)0.0008 (12)0.0065 (11)
O70.0719 (18)0.0546 (15)0.0601 (15)0.0045 (13)0.0018 (13)0.0167 (12)

Geometric parameters (Å, °)

C1—N51.322 (4)C11—C121.362 (5)
C1—N11.341 (4)C11—H110.9300
C1—C21.420 (4)C12—H120.9300
C2—C31.356 (5)Cu1—N51.914 (2)
C2—H20.9300Cu1—O21.952 (2)
C3—C41.412 (5)Cu1—N62.097 (2)
C3—H30.9300Cu1—N22.102 (2)
C4—C91.387 (4)Cu1—O12.232 (2)
C4—C51.437 (5)N1—N21.422 (3)
C5—C61.351 (5)N1—H10.8600
C5—H50.9300N2—H2A0.9000
C6—C71.425 (5)N2—H2B0.9000
C6—H60.9300N3—O41.190 (4)
C7—C121.405 (5)N3—O31.213 (4)
C7—C81.412 (4)N3—O21.280 (3)
C8—N61.363 (4)N4—O51.234 (3)
C8—C91.413 (4)N4—O71.239 (3)
C9—N51.358 (4)N4—O61.240 (3)
C10—N61.332 (4)O1—H90.8422
C10—C111.402 (5)O1—H130.8485
C10—H100.9300
N5—C1—N1114.9 (3)N5—Cu1—O2168.02 (11)
N5—C1—C2120.2 (3)N5—Cu1—N680.55 (10)
N1—C1—C2125.0 (3)O2—Cu1—N694.10 (9)
C3—C2—C1118.9 (3)N5—Cu1—N277.72 (10)
C3—C2—H2120.5O2—Cu1—N2106.66 (9)
C1—C2—H2120.5N6—Cu1—N2158.07 (10)
C2—C3—C4121.3 (3)N5—Cu1—O1101.19 (9)
C2—C3—H3119.4O2—Cu1—O189.57 (10)
C4—C3—H3119.4N6—Cu1—O191.11 (8)
C9—C4—C3116.6 (3)N2—Cu1—O195.94 (9)
C9—C4—C5116.6 (3)C1—N1—N2116.0 (2)
C3—C4—C5126.9 (3)C1—N1—H1122.0
C6—C5—C4121.0 (3)N2—N1—H1122.0
C6—C5—H5119.5N1—N2—Cu1109.92 (17)
C4—C5—H5119.5N1—N2—H2A109.7
C5—C6—C7122.5 (3)Cu1—N2—H2A109.7
C5—C6—H6118.8N1—N2—H2B109.7
C7—C6—H6118.8Cu1—N2—H2B109.7
C12—C7—C8115.7 (3)H2A—N2—H2B108.2
C12—C7—C6126.6 (3)O4—N3—O3120.0 (3)
C8—C7—C6117.8 (3)O4—N3—O2119.7 (3)
N6—C8—C7124.3 (3)O3—N3—O2120.2 (3)
N6—C8—C9117.0 (3)O5—N4—O7121.6 (3)
C7—C8—C9118.7 (3)O5—N4—O6119.3 (3)
N5—C9—C4122.0 (3)O7—N4—O6119.1 (3)
N5—C9—C8114.6 (3)C1—N5—C9121.1 (3)
C4—C9—C8123.4 (3)C1—N5—Cu1121.3 (2)
N6—C10—C11121.9 (3)C9—N5—Cu1117.6 (2)
N6—C10—H10119.0C10—N6—C8117.6 (3)
C11—C10—H10119.0C10—N6—Cu1132.3 (2)
C12—C11—C10120.2 (3)C8—N6—Cu1109.92 (19)
C12—C11—H11119.9Cu1—O1—H9104.8
C10—C11—H11119.9Cu1—O1—H13106.4
C11—C12—C7120.2 (3)H9—O1—H13108.2
C11—C12—H12119.9N3—O2—Cu1123.3 (2)
C7—C12—H12119.9
N5—C1—C2—C3−1.2 (5)N1—C1—N5—Cu1−3.2 (4)
N1—C1—C2—C3179.7 (3)C2—C1—N5—Cu1177.6 (2)
C1—C2—C3—C40.7 (5)C4—C9—N5—C11.2 (4)
C2—C3—C4—C90.7 (5)C8—C9—N5—C1−179.4 (3)
C2—C3—C4—C5−179.4 (3)C4—C9—N5—Cu1−176.2 (2)
C9—C4—C5—C60.2 (5)C8—C9—N5—Cu13.2 (3)
C3—C4—C5—C6−179.7 (3)O2—Cu1—N5—C1113.5 (5)
C4—C5—C6—C70.5 (5)N6—Cu1—N5—C1177.7 (2)
C5—C6—C7—C12179.3 (3)N2—Cu1—N5—C10.7 (2)
C5—C6—C7—C8−0.5 (5)O1—Cu1—N5—C1−93.0 (2)
C12—C7—C8—N6−0.5 (4)O2—Cu1—N5—C9−69.0 (5)
C6—C7—C8—N6179.3 (3)N6—Cu1—N5—C9−4.8 (2)
C12—C7—C8—C9180.0 (3)N2—Cu1—N5—C9178.2 (2)
C6—C7—C8—C9−0.2 (4)O1—Cu1—N5—C984.5 (2)
C3—C4—C9—N5−1.7 (4)C11—C10—N6—C81.7 (5)
C5—C4—C9—N5178.4 (3)C11—C10—N6—Cu1−172.6 (2)
C3—C4—C9—C8179.0 (3)C7—C8—N6—C10−0.6 (4)
C5—C4—C9—C8−0.9 (4)C9—C8—N6—C10178.9 (3)
N6—C8—C9—N52.0 (4)C7—C8—N6—Cu1174.9 (2)
C7—C8—C9—N5−178.4 (3)C9—C8—N6—Cu1−5.5 (3)
N6—C8—C9—C4−178.6 (3)N5—Cu1—N6—C10−179.9 (3)
C7—C8—C9—C40.9 (4)O2—Cu1—N6—C10−10.7 (3)
N6—C10—C11—C12−1.8 (5)N2—Cu1—N6—C10−172.0 (3)
C10—C11—C12—C70.6 (5)O1—Cu1—N6—C1079.0 (3)
C8—C7—C12—C110.5 (5)N5—Cu1—N6—C85.51 (18)
C6—C7—C12—C11−179.3 (3)O2—Cu1—N6—C8174.71 (19)
N5—C1—N1—N24.7 (4)N2—Cu1—N6—C813.3 (4)
C2—C1—N1—N2−176.2 (3)O1—Cu1—N6—C8−95.65 (19)
C1—N1—N2—Cu1−4.0 (3)O4—N3—O2—Cu1179.2 (3)
N5—Cu1—N2—N11.71 (19)O3—N3—O2—Cu10.9 (5)
O2—Cu1—N2—N1−166.8 (2)N5—Cu1—O2—N3−105.8 (5)
N6—Cu1—N2—N1−6.2 (4)N6—Cu1—O2—N3−168.8 (3)
O1—Cu1—N2—N1101.9 (2)N2—Cu1—O2—N34.1 (3)
N1—C1—N5—C9179.4 (3)O1—Cu1—O2—N3100.2 (3)
C2—C1—N5—C90.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.862.182.936 (4)146
N1—H1···O7i0.862.543.181 (4)132
N2—H2A···O3ii0.902.223.111 (4)169
N2—H2B···O7iii0.902.173.055 (4)168
O1—H9···O5iii0.841.982.818 (3)175
O1—H9···O7iii0.842.583.185 (3)130
O1—H13···O6iv0.851.992.821 (3)167
C2—H2···O6i0.932.563.253 (4)132
C3—H3···O1v0.932.483.280 (4)144
C11—H11···O4vi0.932.433.118 (5)131

Symmetry codes: (i) x−1, y, z−1; (ii) −x+1, −y, −z; (iii) −x+1, −y, −z+1; (iv) x−1/2, −y+1/2, z−1/2; (v) −x, −y+1, −z; (vi) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2264).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lewis, J. & O’Donoghue, T. D. (1980). J. Chem. Soc. Dalton Trans. pp. 736–742.
  • Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography