PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o958–o959.
Published online 2008 May 3. doi:  10.1107/S160053680801218X
PMCID: PMC2961413

(E)-3-(2-Chloro­phen­yl)-1-(4-nitro­phen­yl)prop-2-en-1-one

Abstract

In the title compound, C15H10ClNO3, a substituted chalcone, the 2-chloro­phenyl and 4-nitro­phenyl rings make a dihedral angle of 26.48 (6)°. The nitro group makes a dihedral angle of 11.64 (7)° with the plane of the benzene ring to which it is bound. Weak intra­molecular C—H(...)O and C—H(...)Cl inter­actions involving the enone groups generate S(5) ring motifs, which help to stabilize the planarity of the 3-(2-chloro­phen­yl)prop-2-en-1-one segment of the mol­ecule. In the crystal structure, adjacent mol­ecules are stacked in a head-to-tail fashion into columns along the a axis by π–π inter­actions [centroid–centroid distance = 3.6955 (8) Å]. Neighbouring columns are linked by weak C—H(...)O inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For related structures, see, for example: Fun et al. (2007 [triangle]); Patil et al. (2006b [triangle]; 2007a [triangle],b [triangle],c [triangle]). For background to the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999 [triangle]); Gu et al. (2008 [triangle]); Patil et al. (2006a [triangle], 2007c [triangle],d [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o958-scheme1.jpg

Experimental

Crystal data

  • C15H10ClNO3
  • M r = 287.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o958-efi1.jpg
  • a = 13.7003 (2) Å
  • b = 7.3659 (1) Å
  • c = 25.9954 (4) Å
  • β = 102.290 (1)°
  • V = 2563.21 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 100.0 (1) K
  • 0.36 × 0.22 × 0.14 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.899, T max = 0.957
  • 27534 measured reflections
  • 3736 independent reflections
  • 3008 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.103
  • S = 1.07
  • 3736 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801218X/sj2489sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801218X/sj2489Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PSP thanks the DRDO, Government of India, for a Senior Research Fellowship (SRF). This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Chalcone derivatives have been extensively studied in attempts to obtain non-linear optical (NLO) materials (Agrinskaya et al., 1999; Patil et al., 2006a, 2007c, 2007d). We have previously synthesized and crystallized several chalcone derivatives to study their non-linear optical properties (Agrinskaya et al., 1999; Fun et al., 2007; Patil et al., 2006a, 2007a, 2007b, 2007c, 2007d). As part of our studies on structure-property relationships of chalcones and the importance of substituted chalcones in nonlinear optics (Agrinskaya et al., 1999; Patil et al., 2006a, 2007c, 2007d), the title compound was synthesized and its crystal structure is reported here. Unfortunately this crystal does not have second-order NLO properties because it crystallizes in the centrosymmetric C2/c space group.

The molecular structure of the title compound (Fig. 1) is not planar as indicated by the dihedral angle between the 4-nitrobenzene and 2-chlorobenzene rings being 26.48 (6)°. The propene unit (C7/C8/C9) is co-planar with the 2-chlorobenzene ring with the torsion angle C6–C7–C8–C9 = -178.41 (12)°. Atoms O1, C8, C9 and C10 lie on a plane and the least-squares plane through this moiety makes dihedral angles of 8.69 (7)° and 26.48 (6)° with the 4-nitrobenzene and 2-chlorolbenzene rings, repectively. The nitro group makes a dihedral angle of 11.64 (7)° with the plane of the benzene ring to which it is bound. Bond lengths and angles shown normal values (Allen et al., 1987) and are comparable to those in related structures (Fun et al., 2007; Patil et al., 2006b; 2007a; 2007b; 2007c; 2007d). In the structure of the title compound, weak intramolecular C7—H7···O1 and C7—H7···Cl1 interactions generate S(5) ring motifs (Bernstein et al., 1995) (Fig. 1 and Table 1) which help to stabilize the planarity of the (2-chlorophenyl)prop-2-en-1-one segment of the molecule.

In the crystal structure (Fig. 2), adjacent molecules are stacked in a head to tail fashion into columns along the a-axis by π···π interactions with the distances of Cg1···Cg2 = 3.6955 (8) Å: symmetry code 1/2 - x, 1/2 + y, 1/2 - zCg1 and Cg2 are the centroids of C1–C6 and C10–C15, respectively. The neighbouring columns are linked by weak C—H···O interactions (Table 1).

Experimental

The title compound was synthesized by the condensation of 2-chlorobenzaldehyde (0.01 mol) with 4-nitroacetophenone (0.01 mol) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring for 4 hr, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 hr. The resulting crude solid was filtered and dried. Colorless single crystals of the title compound suitable for x-ray structure determination were recrystallized from N,N-dimethylformamide (DMF).

Refinement

All H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for CH and aromatic atoms. The highest residual electron density peak is located at 0.70 Å from C8 and the deepest hole is located at 0.56 Å from N1.

Figures

Fig. 1.
The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Weak intramolecular C—H···O and C—H···Cl interactions are drawn as dashed lines.
Fig. 2.
The crystal packing of (I), viewed along the b axis showing the stacking of the molecules along the a axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C15H10ClNO3F000 = 1184
Mr = 287.69Dx = 1.491 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3736 reflections
a = 13.7003 (2) Åθ = 1.6–30.0º
b = 7.3659 (1) ŵ = 0.30 mm1
c = 25.9954 (4) ÅT = 100.0 (1) K
β = 102.290 (1)ºBlock, colorless
V = 2563.21 (7) Å30.36 × 0.22 × 0.14 mm
Z = 8

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer3736 independent reflections
Radiation source: fine-focus sealed tube3008 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.043
Detector resolution: 8.33 pixels mm-1θmax = 30.0º
T = 100.0(1) Kθmin = 1.6º
ω scansh = −19→19
Absorption correction: multi-scan(SADABS; Bruker, 2005)k = −10→10
Tmin = 0.899, Tmax = 0.957l = −36→36
27534 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.103  w = 1/[σ2(Fo2) + (0.0472P)2 + 1.7337P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3736 reflectionsΔρmax = 0.42 e Å3
181 parametersΔρmin = −0.25 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.51146 (3)1.13027 (5)0.327931 (14)0.02471 (10)
O10.26191 (7)0.90593 (14)0.17879 (4)0.0253 (2)
O20.07873 (8)0.27115 (15)−0.01091 (4)0.0305 (3)
O30.18728 (9)0.07688 (15)0.02905 (4)0.0321 (3)
N10.14644 (9)0.22581 (17)0.02587 (4)0.0224 (2)
C10.51251 (10)0.91188 (19)0.35378 (5)0.0193 (3)
C20.57265 (10)0.8810 (2)0.40322 (5)0.0227 (3)
H20.61060.97470.42130.027*
C30.57562 (10)0.7097 (2)0.42526 (5)0.0235 (3)
H30.61570.68810.45830.028*
C40.51884 (10)0.5699 (2)0.39809 (6)0.0228 (3)
H40.52070.45480.41300.027*
C50.45951 (10)0.60253 (19)0.34883 (5)0.0210 (3)
H50.42180.50800.33100.025*
C60.45467 (9)0.77387 (18)0.32502 (5)0.0181 (3)
C70.39252 (9)0.80876 (19)0.27284 (5)0.0191 (3)
H70.39180.92720.26040.023*
C80.33667 (10)0.68819 (19)0.24123 (5)0.0211 (3)
H80.33340.56850.25210.025*
C90.28008 (9)0.74551 (18)0.18885 (5)0.0183 (3)
C100.24532 (9)0.60468 (18)0.14738 (5)0.0173 (3)
C110.27549 (9)0.42431 (19)0.15364 (5)0.0192 (3)
H110.31740.38760.18490.023*
C120.24381 (10)0.29833 (19)0.11385 (5)0.0198 (3)
H120.26420.17780.11780.024*
C130.18098 (9)0.35820 (18)0.06821 (5)0.0181 (3)
C140.14839 (10)0.53630 (19)0.06062 (5)0.0206 (3)
H140.10510.57150.02960.025*
C150.18190 (10)0.65985 (19)0.10033 (5)0.0203 (3)
H150.16220.78070.09580.024*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.02953 (18)0.01723 (17)0.02609 (18)−0.00492 (13)0.00304 (13)−0.00086 (13)
O10.0278 (5)0.0189 (5)0.0263 (5)0.0027 (4)−0.0008 (4)−0.0011 (4)
O20.0343 (6)0.0307 (6)0.0211 (5)−0.0001 (5)−0.0059 (4)−0.0018 (5)
O30.0397 (6)0.0234 (5)0.0297 (6)0.0052 (5)−0.0002 (5)−0.0072 (5)
N10.0254 (6)0.0224 (6)0.0188 (5)−0.0022 (5)0.0034 (4)−0.0015 (5)
C10.0208 (6)0.0175 (6)0.0202 (6)0.0004 (5)0.0056 (5)−0.0017 (5)
C20.0230 (6)0.0246 (7)0.0195 (6)−0.0026 (5)0.0025 (5)−0.0050 (5)
C30.0221 (6)0.0297 (8)0.0181 (6)0.0043 (6)0.0028 (5)−0.0015 (6)
C40.0242 (6)0.0214 (7)0.0227 (7)0.0031 (5)0.0049 (5)0.0026 (5)
C50.0223 (6)0.0185 (6)0.0215 (6)−0.0013 (5)0.0032 (5)−0.0005 (5)
C60.0175 (5)0.0183 (6)0.0188 (6)−0.0002 (5)0.0043 (5)−0.0016 (5)
C70.0199 (6)0.0165 (6)0.0209 (6)−0.0003 (5)0.0042 (5)0.0006 (5)
C80.0271 (6)0.0170 (6)0.0179 (6)−0.0020 (5)0.0019 (5)0.0006 (5)
C90.0179 (5)0.0180 (6)0.0191 (6)−0.0005 (5)0.0042 (5)0.0000 (5)
C100.0162 (5)0.0184 (6)0.0171 (6)−0.0004 (5)0.0034 (4)0.0010 (5)
C110.0188 (6)0.0205 (6)0.0166 (6)0.0006 (5)0.0000 (5)0.0018 (5)
C120.0218 (6)0.0171 (6)0.0197 (6)0.0020 (5)0.0026 (5)0.0007 (5)
C130.0188 (6)0.0193 (6)0.0159 (6)−0.0018 (5)0.0032 (4)−0.0015 (5)
C140.0219 (6)0.0205 (7)0.0175 (6)0.0021 (5)0.0003 (5)0.0031 (5)
C150.0218 (6)0.0182 (6)0.0195 (6)0.0013 (5)0.0017 (5)0.0029 (5)

Geometric parameters (Å, °)

Cl1—C11.7422 (14)C7—C81.3348 (19)
O1—C91.2243 (16)C7—H70.9300
O2—N11.2283 (15)C8—C91.4777 (18)
O3—N11.2263 (16)C8—H80.9300
N1—C131.4712 (17)C9—C101.4989 (18)
C1—C21.3898 (19)C10—C111.3906 (19)
C1—C61.4029 (18)C10—C151.4012 (18)
C2—C31.382 (2)C11—C121.3886 (19)
C2—H20.9300C11—H110.9300
C3—C41.389 (2)C12—C131.3814 (18)
C3—H30.9300C12—H120.9300
C4—C51.3839 (19)C13—C141.3863 (19)
C4—H40.9300C14—C151.3795 (19)
C5—C61.4010 (19)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—C71.4627 (18)
O3—N1—O2123.63 (12)C7—C8—C9119.78 (13)
O3—N1—C13118.24 (11)C7—C8—H8120.1
O2—N1—C13118.13 (12)C9—C8—H8120.1
C2—C1—C6122.04 (13)O1—C9—C8121.04 (12)
C2—C1—Cl1117.55 (11)O1—C9—C10119.69 (12)
C6—C1—Cl1120.41 (10)C8—C9—C10119.28 (12)
C3—C2—C1119.48 (13)C11—C10—C15119.53 (12)
C3—C2—H2120.3C11—C10—C9122.41 (11)
C1—C2—H2120.3C15—C10—C9118.04 (12)
C2—C3—C4120.10 (13)C12—C11—C10120.88 (12)
C2—C3—H3119.9C12—C11—H11119.6
C4—C3—H3119.9C10—C11—H11119.6
C5—C4—C3119.79 (14)C13—C12—C11117.72 (13)
C5—C4—H4120.1C13—C12—H12121.1
C3—C4—H4120.1C11—C12—H12121.1
C4—C5—C6121.89 (13)C12—C13—C14123.19 (13)
C4—C5—H5119.1C12—C13—N1118.25 (12)
C6—C5—H5119.1C14—C13—N1118.56 (12)
C5—C6—C1116.69 (12)C15—C14—C13118.16 (12)
C5—C6—C7122.10 (12)C15—C14—H14120.9
C1—C6—C7121.21 (12)C13—C14—H14120.9
C8—C7—C6126.75 (13)C14—C15—C10120.51 (13)
C8—C7—H7116.6C14—C15—H15119.7
C6—C7—H7116.6C10—C15—H15119.7
C6—C1—C2—C3−0.4 (2)C8—C9—C10—C11−8.89 (19)
Cl1—C1—C2—C3179.90 (10)O1—C9—C10—C15−7.99 (19)
C1—C2—C3—C40.0 (2)C8—C9—C10—C15172.55 (12)
C2—C3—C4—C50.2 (2)C15—C10—C11—C120.2 (2)
C3—C4—C5—C60.1 (2)C9—C10—C11—C12−178.36 (12)
C4—C5—C6—C1−0.5 (2)C10—C11—C12—C13−0.5 (2)
C4—C5—C6—C7179.65 (13)C11—C12—C13—C14−0.2 (2)
C2—C1—C6—C50.67 (19)C11—C12—C13—N1−179.66 (12)
Cl1—C1—C6—C5−179.69 (10)O3—N1—C13—C12−11.92 (19)
C2—C1—C6—C7−179.46 (12)O2—N1—C13—C12168.59 (12)
Cl1—C1—C6—C70.19 (18)O3—N1—C13—C14168.59 (13)
C5—C6—C7—C8−2.1 (2)O2—N1—C13—C14−10.89 (19)
C1—C6—C7—C8178.04 (13)C12—C13—C14—C151.1 (2)
C6—C7—C8—C9−178.41 (12)N1—C13—C14—C15−179.41 (12)
C7—C8—C9—O1−19.1 (2)C13—C14—C15—C10−1.4 (2)
C7—C8—C9—C10160.38 (12)C11—C10—C15—C140.8 (2)
O1—C9—C10—C11170.56 (13)C9—C10—C15—C14179.38 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.583.4284 (18)152
C5—H5···O1ii0.932.593.2996 (17)134
C7—H7···Cl10.932.603.0531 (14)110
C7—H7···O10.932.472.7981 (16)101
C12—H12···O1iii0.932.563.3298 (17)141

Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2489).

References

  • Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2007). Acta Cryst. E63, o561–o562.
  • Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett.92, 091118–091121.
  • Patil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o1738–o1740.
  • Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006a). J. Cryst. Growth, 297, 111–116.
  • Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007c). J. Cryst. Growth, 303, 520–524.
  • Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497–o2498.
  • Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o896–o898.
  • Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007d). Acta Cryst. E63, o2122–o2123.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography