PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o976.
Published online 2008 May 3. doi:  10.1107/S1600536808012403
PMCID: PMC2961412

2-(Mesitylmethyl­sulfan­yl)pyridine N-oxide–18-crown-6 (2/1)

Abstract

In the title compound, 2C15H17NOS·C12H24O6, the asymmetric unit consists of one N-oxide derivative and one-half of the 18-crown-6 ether, which lies on an inversion centre. In the crown ether, the O—C—C—O torsion angles indicate a gauche conformation of the ethyl­eneoxy units, while the C—O—C—C torsion angles indicate planarity of these segments. In the N-oxide unit, the dihedral angle between the pyridine and benzene rings is 85.88 (12)°. The crystal packing is stabilized by weak C—H(...)O hydrogen bonds and C—H(...)π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For the biological activities of N-oxide derivatives, see: Bovin et al.(1992 [triangle]); Katsuyuki et al.(1991 [triangle]); Leonard et al.(1955 [triangle]); Lobana & Bhatia (1989 [triangle]); Symons & West (1985 [triangle]). For related structures, see: Jebas et al.(2005 [triangle]); Ravindran Durai Nayagam et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o976-scheme1.jpg

Experimental

Crystal data

  • 2C15H17NOS·C12H24O6
  • M r = 783.02
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o976-efi1.jpg
  • a = 8.050 (2) Å
  • b = 18.1903 (18) Å
  • c = 14.424 (4) Å
  • β = 93.475 (14)°
  • V = 2108.3 (8) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 1.57 mm−1
  • T = 298 (2) K
  • 0.26 × 0.22 × 0.19 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.95, T max = 0.99 (expected range = 0.712–0.742)
  • 3999 measured reflections
  • 3999 independent reflections
  • 2846 reflections with I > 2σ(I)
  • 3 standard reflections frequency: 60 min intensity decay: 3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.132
  • S = 1.02
  • 3999 reflections
  • 247 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012403/ci2589sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012403/ci2589Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BRDN thanks the University Grants Commission, India, for a Teacher Fellowship.

supplementary crystallographic information

Comment

N-Oxides and their derivatives show a broad spectrum of biological activity, such as antifungal, antibacterial, antimicrobial and antibacterial activities (Lobana & Bhatia, 1989; Symons et al.,1985). These compounds are also found to be involved in DNA strand scission under physiological conditions (Katsuyuki et al., 1991; Bovin et al.1992). Pyridine N-oxides bearing a sulfur group in position 2 display significant antimicrobial activity (Leonard et al.,1955). In view of the importance of N-oxides, we have previously reported the crystal structures of N-oxide derivatives (Jebas et al., 2005; Ravindran Durai Nayagam et al., 2008). As an extension of our work on these derivatives, we report here the crystal structure of the title compound (Fig. 1).

The asymmetric unit of the title compound consists of one mono(1-oxopyridine 2-sulfanylmethyl)mesitylene molecule and one-half of a 18-crown 6-ether molecule, the other half being inversion related. The bond lengths and angles of the N-oxide moiety agree well with those observed in other N-oxide derivatives reported earlier (Jebas et al., 2005; Ravindran et al., 2008). The N—O bond length is in good agreement with the mean value of 1.304 (15) Å reported in the literature for pyridine N-oxides (Allen et al.,1987).

The oxopyridinium and benzene rings are planar to within ±0.006 (2) Å and ±0.012 (2) Å, respectively, and they form a dihedral angle of 85.88 (12)°, indicating that both the rings are perpendicular to each other. Atom O7 deviates from the plane of the pyridinium ring by 0.006 (2) Å.

The crystal packing is consolidated by weak C—H···π interactions involving the oxopyridinium (N6/C1–C5) and benzene rings (C10–15), and C—H···O hydrogen bonds (Table 1).

Experimental

A mixture of mono(bromomethyl)mesitylene (0.213 g, 1 mmol), 1-hydroxypyridine-2-thione sodium salt (0.1491 mmol) and 18-crown-6-ether (0.250 g) in water (30 ml) and methanol (30 ml) was heated at 333 K with stirring for 30 min. The compound formed was filtered off and dried. The compound was recrystallized from a chloroform-methanol (1:1 v/v) solution.

Refinement

H atoms were positioned geometrically [C-H = 0.93 (aromatic), 0.96 Å (methyl) and 0.97 Å (methylene)] and refined using a riding model, with Uiso(H) = 1.2-1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. Atoms labelled with the suffix A are generated by the symmetry operation (-x, 1-y, 1-z).
Fig. 2.
The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

2C15H17NOS·C12H24O6F000 = 840
Mr = 783.02Dx = 1.233 Mg m3
Monoclinic, P21/cCu Kα radiation λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.050 (2) Åθ = 26–41º
b = 18.1903 (18) ŵ = 1.57 mm1
c = 14.424 (4) ÅT = 298 (2) K
β = 93.475 (14)ºBlock, colourless
V = 2108.3 (8) Å30.26 × 0.22 × 0.19 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0
Monochromator: graphiteθmax = 70.1º
T = 298(2) Kθmin = 3.9º
ω/2θ scansh = 0→9
Absorption correction: ψ scan(North et al., 1968)k = 0→22
Tmin = 0.95, Tmax = 0.99l = −17→17
3999 measured reflections3 standard reflections
3999 independent reflections every 60 min
2846 reflections with I > 2σ(I) intensity decay: 3%

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0563P)2 + 0.3138P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.049(Δ/σ)max < 0.001
wR(F2) = 0.132Δρmax = 0.21 e Å3
S = 1.03Δρmin = −0.25 e Å3
3999 reflectionsExtinction correction: none
247 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7135 (3)0.08450 (12)0.27904 (15)0.0427 (5)
C20.7560 (3)0.01163 (13)0.29202 (16)0.0478 (6)
H20.7162−0.01440.34150.057*
C30.8569 (3)−0.02246 (14)0.23183 (18)0.0571 (7)
H30.8865−0.07150.24110.069*
C40.9142 (4)0.01540 (15)0.1584 (2)0.0637 (7)
H40.9813−0.00770.11690.076*
C50.8717 (3)0.08740 (16)0.1468 (2)0.0637 (7)
H50.91060.11340.0970.076*
N60.7742 (3)0.12176 (11)0.20600 (15)0.0532 (5)
O70.7329 (3)0.19062 (10)0.19510 (16)0.0837 (7)
S80.58479 (9)0.13969 (3)0.34265 (5)0.0552 (2)
C90.5267 (3)0.07413 (12)0.43059 (17)0.0498 (6)
H9A0.45870.03530.4020.06*
H9B0.62560.05210.46060.06*
C100.4303 (3)0.11466 (12)0.50103 (16)0.0437 (5)
C110.5156 (3)0.15214 (12)0.57329 (17)0.0459 (5)
C120.4274 (3)0.19058 (13)0.63763 (17)0.0502 (6)
H120.48530.21640.68490.06*
C130.2556 (3)0.19120 (13)0.63282 (17)0.0494 (6)
C140.1730 (3)0.15298 (13)0.56197 (18)0.0510 (6)
H140.05730.15210.55910.061*
C150.2554 (3)0.11556 (13)0.49443 (17)0.0481 (6)
C160.7035 (3)0.15389 (16)0.5834 (2)0.0643 (7)
H16A0.73870.18980.62920.096*
H16B0.74660.16660.52490.096*
H16C0.74440.10630.60250.096*
C170.1631 (4)0.23629 (17)0.7009 (2)0.0729 (9)
H17A0.22880.23990.75850.109*
H17B0.0590.2130.71150.109*
H17C0.14280.28460.67590.109*
C180.1546 (4)0.07817 (17)0.4161 (2)0.0760 (9)
H18A0.16690.02580.42180.114*
H18B0.19350.09390.35770.114*
H18C0.03940.0910.4190.114*
C190.3730 (4)0.40558 (17)0.5469 (2)0.0732 (8)
H19A0.41340.42710.4910.088*
H19B0.4460.36520.56570.088*
O200.2098 (2)0.37888 (10)0.52814 (12)0.0592 (5)
C210.2021 (4)0.32669 (14)0.45558 (19)0.0601 (7)
H21A0.27240.28490.47270.072*
H21B0.24210.34850.39970.072*
C220.0265 (4)0.30186 (14)0.43774 (19)0.0604 (7)
H22A0.02230.25970.39660.072*
H22B−0.020.28770.49560.072*
O23−0.0651 (2)0.36052 (10)0.39661 (13)0.0635 (5)
C24−0.2386 (4)0.34718 (16)0.3842 (2)0.0701 (8)
H24A−0.28320.33470.44320.084*
H24B−0.25960.30640.34170.084*
C25−0.3196 (4)0.41482 (17)0.3459 (2)0.0710 (8)
H25A−0.2670.42980.29010.085*
H25B−0.43620.40510.32940.085*
O26−0.3054 (2)0.47147 (10)0.41232 (12)0.0593 (5)
C27−0.3763 (4)0.53832 (17)0.3785 (2)0.0751 (9)
H27A−0.49040.52980.35550.09*
H27B−0.31460.55620.32740.09*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0446 (12)0.0398 (11)0.0441 (12)−0.0009 (10)0.0063 (10)0.0024 (10)
C20.0595 (15)0.0396 (12)0.0446 (13)0.0021 (11)0.0072 (11)0.0024 (10)
C30.0721 (18)0.0430 (13)0.0575 (16)0.0097 (12)0.0141 (13)−0.0013 (11)
C40.0701 (18)0.0579 (16)0.0655 (18)0.0079 (14)0.0232 (14)−0.0043 (14)
C50.0668 (17)0.0661 (17)0.0609 (16)0.0010 (14)0.0273 (14)0.0083 (14)
N60.0555 (12)0.0434 (11)0.0623 (13)0.0026 (9)0.0160 (10)0.0114 (9)
O70.1030 (17)0.0471 (11)0.1058 (17)0.0174 (11)0.0451 (13)0.0281 (11)
S80.0691 (4)0.0367 (3)0.0622 (4)0.0080 (3)0.0234 (3)0.0054 (3)
C90.0619 (15)0.0363 (12)0.0526 (14)0.0007 (11)0.0147 (12)0.0009 (10)
C100.0471 (13)0.0355 (11)0.0494 (13)0.0004 (9)0.0103 (10)0.0027 (10)
C110.0416 (12)0.0413 (12)0.0554 (14)0.0010 (10)0.0094 (10)0.0009 (10)
C120.0544 (15)0.0465 (13)0.0499 (14)0.0031 (11)0.0050 (11)−0.0025 (11)
C130.0551 (15)0.0455 (13)0.0494 (14)0.0106 (11)0.0180 (11)0.0104 (11)
C140.0405 (12)0.0496 (14)0.0639 (16)0.0039 (11)0.0109 (11)0.0135 (12)
C150.0473 (13)0.0403 (12)0.0565 (14)−0.0030 (10)0.0026 (11)0.0067 (11)
C160.0475 (15)0.0646 (17)0.0806 (19)0.0003 (13)0.0036 (13)−0.0121 (15)
C170.084 (2)0.0733 (19)0.0652 (18)0.0222 (16)0.0339 (16)0.0082 (15)
C180.0627 (18)0.073 (2)0.090 (2)−0.0042 (15)−0.0110 (16)−0.0117 (18)
C190.0583 (17)0.0603 (18)0.101 (2)0.0089 (14)0.0081 (16)0.0113 (17)
O200.0580 (11)0.0578 (11)0.0633 (11)0.0006 (8)0.0147 (9)−0.0013 (9)
C210.0724 (18)0.0469 (14)0.0634 (17)0.0101 (13)0.0246 (14)0.0093 (12)
C220.082 (2)0.0395 (13)0.0613 (16)0.0011 (13)0.0222 (14)0.0054 (12)
O230.0668 (12)0.0476 (10)0.0768 (13)−0.0066 (9)0.0089 (10)0.0110 (9)
C240.073 (2)0.0585 (17)0.079 (2)−0.0173 (15)0.0043 (16)−0.0082 (15)
C250.0691 (19)0.0725 (19)0.0694 (19)−0.0102 (16)−0.0117 (15)−0.0074 (16)
O260.0608 (11)0.0588 (11)0.0574 (11)0.0024 (9)−0.0048 (9)0.0023 (9)
C270.0657 (19)0.072 (2)0.085 (2)0.0026 (15)−0.0183 (16)0.0099 (17)

Geometric parameters (Å, °)

C1—N61.368 (3)C16—H16C0.96
C1—C21.379 (3)C17—H17A0.96
C1—S81.743 (2)C17—H17B0.96
C2—C31.373 (3)C17—H17C0.96
C2—H20.93C18—H18A0.96
C3—C41.367 (4)C18—H18B0.96
C3—H30.93C18—H18C0.96
C4—C51.362 (4)C19—O201.411 (3)
C4—H40.93C19—C27i1.482 (4)
C5—N61.348 (3)C19—H19A0.97
C5—H50.93C19—H19B0.97
N6—O71.303 (3)O20—C211.412 (3)
S8—C91.823 (2)C21—C221.491 (4)
C9—C101.508 (3)C21—H21A0.97
C9—H9A0.97C21—H21B0.97
C9—H9B0.97C22—O231.408 (3)
C10—C111.392 (3)C22—H22A0.97
C10—C151.406 (3)C22—H22B0.97
C11—C121.391 (3)O23—C241.418 (3)
C11—C161.510 (3)C24—C251.483 (4)
C12—C131.380 (3)C24—H24A0.97
C12—H120.93C24—H24B0.97
C13—C141.374 (4)C25—O261.407 (3)
C13—C171.509 (3)C25—H25A0.97
C14—C151.389 (3)C25—H25B0.97
C14—H140.93O26—C271.417 (3)
C15—C181.512 (4)C27—C19i1.482 (4)
C16—H16A0.96C27—H27A0.97
C16—H16B0.96C27—H27B0.97
N6—C1—C2118.9 (2)C13—C17—H17B109.5
N6—C1—S8111.80 (17)H17A—C17—H17B109.5
C2—C1—S8129.24 (18)C13—C17—H17C109.5
C3—C2—C1120.0 (2)H17A—C17—H17C109.5
C3—C2—H2120H17B—C17—H17C109.5
C1—C2—H2120C15—C18—H18A109.5
C4—C3—C2120.2 (2)C15—C18—H18B109.5
C4—C3—H3119.9H18A—C18—H18B109.5
C2—C3—H3119.9C15—C18—H18C109.5
C5—C4—C3119.1 (2)H18A—C18—H18C109.5
C5—C4—H4120.5H18B—C18—H18C109.5
C3—C4—H4120.5O20—C19—C27i110.6 (2)
N6—C5—C4121.3 (2)O20—C19—H19A109.5
N6—C5—H5119.4C27i—C19—H19A109.5
C4—C5—H5119.4O20—C19—H19B109.5
O7—N6—C5121.5 (2)C27i—C19—H19B109.5
O7—N6—C1118.0 (2)H19A—C19—H19B108.1
C5—N6—C1120.5 (2)C19—O20—C21111.8 (2)
C1—S8—C9100.10 (11)O20—C21—C22109.3 (2)
C10—C9—S8108.26 (15)O20—C21—H21A109.8
C10—C9—H9A110C22—C21—H21A109.8
S8—C9—H9A110O20—C21—H21B109.8
C10—C9—H9B110C22—C21—H21B109.8
S8—C9—H9B110H21A—C21—H21B108.3
H9A—C9—H9B108.4O23—C22—C21108.1 (2)
C11—C10—C15119.5 (2)O23—C22—H22A110.1
C11—C10—C9119.6 (2)C21—C22—H22A110.1
C15—C10—C9120.9 (2)O23—C22—H22B110.1
C12—C11—C10119.8 (2)C21—C22—H22B110.1
C12—C11—C16118.3 (2)H22A—C22—H22B108.4
C10—C11—C16121.9 (2)C22—O23—C24114.2 (2)
C13—C12—C11121.4 (2)O23—C24—C25108.2 (2)
C13—C12—H12119.3O23—C24—H24A110.1
C11—C12—H12119.3C25—C24—H24A110.1
C14—C13—C12118.1 (2)O23—C24—H24B110.1
C14—C13—C17121.6 (2)C25—C24—H24B110.1
C12—C13—C17120.2 (3)H24A—C24—H24B108.4
C13—C14—C15122.7 (2)O26—C25—C24109.7 (2)
C13—C14—H14118.7O26—C25—H25A109.7
C15—C14—H14118.7C24—C25—H25A109.7
C14—C15—C10118.5 (2)O26—C25—H25B109.7
C14—C15—C18119.1 (2)C24—C25—H25B109.7
C10—C15—C18122.4 (2)H25A—C25—H25B108.2
C11—C16—H16A109.5C25—O26—C27112.3 (2)
C11—C16—H16B109.5O26—C27—C19i110.6 (2)
H16A—C16—H16B109.5O26—C27—H27A109.5
C11—C16—H16C109.5C19i—C27—H27A109.5
H16A—C16—H16C109.5O26—C27—H27B109.5
H16B—C16—H16C109.5C19i—C27—H27B109.5
C13—C17—H17A109.5H27A—C27—H27B108.1
N6—C1—C2—C3−0.3 (4)C10—C11—C12—C131.5 (4)
S8—C1—C2—C3178.2 (2)C16—C11—C12—C13−179.8 (2)
C1—C2—C3—C4−0.7 (4)C11—C12—C13—C14−0.4 (4)
C2—C3—C4—C51.0 (4)C11—C12—C13—C17−177.1 (2)
C3—C4—C5—N6−0.2 (5)C12—C13—C14—C15−1.6 (4)
C4—C5—N6—O7−179.9 (3)C17—C13—C14—C15175.1 (2)
C4—C5—N6—C1−0.8 (4)C13—C14—C15—C102.4 (3)
C2—C1—N6—O7−179.8 (2)C13—C14—C15—C18−176.9 (2)
S8—C1—N6—O71.4 (3)C11—C10—C15—C14−1.3 (3)
C2—C1—N6—C51.1 (4)C9—C10—C15—C14179.2 (2)
S8—C1—N6—C5−177.7 (2)C11—C10—C15—C18178.0 (2)
N6—C1—S8—C9179.41 (18)C9—C10—C15—C18−1.6 (4)
C2—C1—S8—C90.8 (3)C27i—C19—O20—C21178.4 (2)
C1—S8—C9—C10172.97 (17)C19—O20—C21—C22−178.8 (2)
S8—C9—C10—C11−83.8 (2)O20—C21—C22—O2370.4 (3)
S8—C9—C10—C1595.8 (2)C21—C22—O23—C24−174.0 (2)
C15—C10—C11—C12−0.6 (3)C22—O23—C24—C25176.6 (2)
C9—C10—C11—C12179.0 (2)O23—C24—C25—O26−66.6 (3)
C15—C10—C11—C16−179.3 (2)C24—C25—O26—C27178.2 (3)
C9—C10—C11—C160.3 (3)C25—O26—C27—C19i174.7 (2)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···O23ii0.932.503.187 (3)131
C16—H16A···O7iii0.962.383.257 (4)152
C27—H27A···Cg1iv0.972.783.723 (4)163
C21—H21A···Cg20.972.803.693 (3)153
C2—H2···Cg2v0.932.903.732 (3)150

Symmetry codes: (ii) −x+1, y−1/2, −z+1/2; (iii) x, −y+1/2, z+1/2; (iv) −x, y+1/2, −z+1/2; (v) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2589).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  • Bovin, D. H. R., Crepon, E. & Zard, S. Z. (1992). Bull. Soc. Chem. Fr.129, 145–150.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Jebas, S. R., Balasubramanian, T., Ravidurai, B. & Kumaresan, S. (2005). Acta Cryst. E61, o2677–o2678.
  • Katsuyuki, N., Carter, B. J., Xu, J. & Hetch, S. M. (1991). J. Am. Chem. Soc. 113, 5099–5100.
  • Leonard, F., Barklay, F. A., Brown, E. V., Anderson, F. E. & Green, D. M. (1955). Antibiot. Chemother. pp. 261–264.
  • Lobana, T. S. & Bhatia, P. K. (1989). J. Sci. Ind. Res. 48, 394–401.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Ravindran Durai Nayagam, B., Jebas, S. R., Grace, S. & Schollmeyer, D. (2008). Acta Cryst. E64, o409. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Symons, M. C. R. & West, D.-X. (1985). J Chem Soc Dalton Trans pp. 379–381.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography