PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1068.
Published online 2008 May 14. doi:  10.1107/S1600536808012208
PMCID: PMC2961410

1-(2-Furo­yl)-3-(1-naphth­yl)thio­urea

Abstract

In the title compound, C16H12N2O2S, the carbonyl­thio­urea group forms dihedral angles of 75.4 (1) and 13.1 (2)°, respectively, with the naphthalene ring system and furan ring. The mol­ecule adopts a transcis configuration with respect to the positions of the furoyl and naphthyl groups relative to the S atom across the thio­urea C—N bonds. This geometry is stabilized by an N—H(...)·O intra­molecular hydrogen bond. In the crystal structure, mol­ecules are linked by N—H(...)S hydrogen bonds, forming centrosymmetric dimers which are inter­linked through C—H(...)π inter­actions.

Related literature

For general background, see: Ashraf et al. (2007 [triangle]); Koch (2001 [triangle]). For related structures, see: Dago et al. (1987 [triangle]); Cao et al. (1996 [triangle]); Yuan et al. (1997 [triangle]); Kaminsky et al. (2002 [triangle]); Weiqun et al. (2003 [triangle]); Yamin & Hassan (2004 [triangle]). For the synthesis, see: Otazo et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1068-scheme1.jpg

Experimental

Crystal data

  • C16H12N2O2S
  • M r = 296.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1068-efi1.jpg
  • a = 9.402 (2) Å
  • b = 19.082 (4) Å
  • c = 7.880 (2) Å
  • β = 94.94 (1)°
  • V = 1408.5 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 294 (2) K
  • 0.50 × 0.25 × 0.05 mm

Data collection

  • Siemens P4 diffractometer
  • Absorption correction: none
  • 3603 measured reflections
  • 2771 independent reflections
  • 1521 reflections with I > 2σ(I)
  • R int = 0.043
  • 3 standard reflections every 97 reflections intensity decay: 2.6%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.131
  • S = 1.02
  • 2771 reflections
  • 239 parameters
  • All H-atom parameters refined
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012208/ci2591sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012208/ci2591Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, Brazil, for allowing the X-ray data collection. The authors acknowledge financial support from the Brazilian agency CNPq.

supplementary crystallographic information

Comment

The subject of aroylsubstituted thioureas is considered as a very interesting topic due to their remarkable optical and electronic properties (Ashraf et al.,2007). Substitutions that reduce the symmetry of the thiourea molecule enhance the non-linear optical properties. A variety of crystals of this class has been reported (Dago et al., 1987; Cao et al., 1996; Yuan et al., 1997; Kaminsky et al., 2002; Weiqun et al., 2003). The title compound (Fig.1) is another example of a newly synthesized furoylthiourea derivative.

The bond lengths and angles are comparable with those observed in other thiourea derivatives (Koch et al., 2001). The α-naphtalene ring system attached to N2 is essentially planar and inclined at an angle of 75.4 (1)° with respect to the plane of carbonylthiourea group. The dihedral angle between the carbonylthiourea group and furan ring is 13.1 (2)°. The molecule adopts a trans-cis configuration with respect to the position of the furoyl and naphthyl groups relative to the S atom across the thiourea C—N bonds. This geometry is stabilized by the N2—H2···.O1 intramolecular hydrogen bond (Fig.1).

In the crystal structure, molecules are linked by N1—H1···.S1 hydrogen bonds (Table 1) forming a centrosymmetric dimer (Fig. 2). The dimers are arranged along the c axis. In addition, the crystal packing is stabilized by C—H···π interactions involving the C7-C11/C16 ring.

Experimental

The title compound was synthesized according to a previous report (Otazo et al., 2001), by converting furoyl choride into furoyl isothiocyanate and then condensing with α-naphtylamine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 186–187°). Elemental analysis for C16H12N2O2S calculated: C 64.86, H 4.05, N 9.46, S 10.81%; found: C 64.70, H 4.10, N 9.54, S 10.41%.

Refinement

All H atoms were located by difference Fourier synthesis and refined freely.

Figures

Fig. 1.
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···O hydrogen bond is shown as a dashed line.
Fig. 2.
View of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C16H12N2O2SF000 = 616
Mr = 296.34Dx = 1.397 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 37 reflections
a = 9.402 (2) Åθ = 9.9–23.4º
b = 19.082 (4) ŵ = 0.24 mm1
c = 7.880 (2) ÅT = 294 (2) K
β = 94.94 (1)ºPlate, white
V = 1408.5 (6) Å30.50 × 0.25 × 0.05 mm
Z = 4

Data collection

Siemens P4 diffractometerθmax = 26.0º
Radiation source: fine-focus sealed tubeθmin = 2.1º
Monochromator: graphiteh = −11→11
2θ/ω scansk = −23→1
Absorption correction: nonel = −1→9
3603 measured reflections3 standard reflections
2771 independent reflections every 97 reflections
1521 reflections with I > 2σ(I) intensity decay: 2.6%
Rint = 0.043

Refinement

Refinement on F2All H-atom parameters refined
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2114P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.058(Δ/σ)max < 0.001
wR(F2) = 0.131Δρmax = 0.37 e Å3
S = 1.02Δρmin = −0.22 e Å3
2771 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
239 parametersExtinction coefficient: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.57874 (10)−0.05278 (4)0.80311 (14)0.0521 (3)
O10.7296 (2)0.17234 (11)0.7355 (3)0.0472 (7)
O20.4090 (2)0.17986 (11)0.9419 (3)0.0505 (7)
N10.5895 (3)0.08508 (13)0.8319 (4)0.0404 (8)
N20.7522 (3)0.03510 (14)0.6602 (4)0.0382 (7)
C70.8101 (3)−0.02051 (16)0.5647 (4)0.0334 (8)
C110.9652 (3)−0.12250 (17)0.5475 (5)0.0378 (9)
C20.6455 (3)0.02544 (15)0.7612 (4)0.0355 (8)
C80.7742 (4)−0.0249 (2)0.3936 (5)0.0439 (9)
C160.9075 (3)−0.06863 (15)0.6463 (4)0.0334 (8)
C10.6256 (3)0.15409 (16)0.8096 (4)0.0345 (8)
C30.5298 (3)0.20467 (16)0.8776 (4)0.0343 (8)
C100.9242 (4)−0.1259 (2)0.3713 (5)0.0468 (10)
C150.9520 (4)−0.06626 (19)0.8244 (5)0.0399 (9)
C60.3331 (4)0.2368 (2)0.9858 (5)0.0538 (11)
C50.4016 (4)0.2956 (2)0.9518 (5)0.0492 (10)
C40.5283 (4)0.27538 (18)0.8823 (5)0.0453 (9)
C121.0639 (4)−0.1706 (2)0.6295 (6)0.0521 (11)
C90.8308 (4)−0.0782 (2)0.2963 (6)0.0530 (11)
C141.0479 (4)−0.1136 (2)0.8953 (6)0.0526 (11)
C131.1034 (4)−0.1664 (2)0.7981 (6)0.0564 (11)
H150.918 (3)−0.0323 (14)0.890 (4)0.024 (8)*
H40.602 (3)0.3026 (16)0.844 (4)0.040 (9)*
H100.963 (3)−0.1650 (19)0.306 (5)0.055 (10)*
H121.106 (3)−0.2074 (18)0.560 (4)0.055 (10)*
H60.242 (4)0.228 (2)1.031 (5)0.072 (13)*
H80.709 (3)0.0104 (16)0.340 (4)0.039 (9)*
H90.810 (3)−0.0785 (16)0.182 (5)0.039 (10)*
H20.775 (4)0.078 (2)0.645 (5)0.063 (12)*
H131.175 (4)−0.197 (2)0.860 (5)0.081 (14)*
H141.073 (4)−0.1106 (19)1.015 (5)0.062 (12)*
H10.531 (5)0.072 (2)0.913 (6)0.092 (16)*
H50.374 (4)0.342 (2)0.977 (6)0.090 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0644 (6)0.0296 (4)0.0675 (8)−0.0031 (4)0.0355 (5)−0.0018 (5)
O10.0483 (14)0.0326 (12)0.0632 (18)−0.0007 (10)0.0198 (13)0.0038 (12)
O20.0541 (14)0.0330 (12)0.067 (2)0.0051 (11)0.0224 (14)0.0050 (13)
N10.0461 (17)0.0264 (14)0.051 (2)0.0024 (13)0.0188 (16)0.0012 (14)
N20.0428 (16)0.0303 (16)0.0431 (19)0.0004 (13)0.0125 (14)0.0014 (14)
C70.0360 (17)0.0391 (18)0.027 (2)−0.0058 (15)0.0110 (15)−0.0021 (16)
C110.0380 (17)0.0396 (19)0.038 (2)−0.0075 (15)0.0171 (17)−0.0070 (17)
C20.0413 (18)0.0301 (17)0.036 (2)0.0038 (14)0.0104 (16)0.0026 (16)
C80.041 (2)0.055 (2)0.037 (2)−0.0042 (18)0.0065 (18)0.010 (2)
C160.0343 (17)0.0330 (18)0.035 (2)−0.0036 (14)0.0121 (16)−0.0021 (15)
C10.0386 (18)0.0311 (17)0.033 (2)0.0011 (14)0.0004 (17)0.0025 (16)
C30.0398 (18)0.0315 (17)0.032 (2)0.0021 (14)0.0036 (16)0.0020 (16)
C100.050 (2)0.048 (2)0.045 (3)−0.0065 (19)0.022 (2)−0.012 (2)
C150.045 (2)0.043 (2)0.033 (2)0.0055 (17)0.0101 (17)−0.0038 (18)
C60.057 (2)0.052 (2)0.055 (3)0.017 (2)0.021 (2)0.003 (2)
C50.070 (3)0.037 (2)0.042 (3)0.015 (2)0.009 (2)−0.0001 (19)
C40.054 (2)0.036 (2)0.047 (3)0.0026 (17)0.009 (2)0.0019 (19)
C120.053 (2)0.042 (2)0.064 (3)0.0095 (18)0.021 (2)−0.009 (2)
C90.060 (3)0.076 (3)0.025 (2)−0.021 (2)0.014 (2)−0.012 (2)
C140.057 (2)0.066 (3)0.035 (3)0.009 (2)0.004 (2)0.004 (2)
C130.060 (3)0.057 (2)0.053 (3)0.016 (2)0.007 (2)0.007 (2)

Geometric parameters (Å, °)

S1—C21.663 (3)C1—C31.453 (4)
O1—C11.232 (4)C3—C41.350 (4)
O2—C61.362 (4)C10—C91.364 (6)
O2—C31.368 (4)C10—H100.99 (4)
N1—C11.375 (4)C15—C141.362 (5)
N1—C21.391 (4)C15—H150.90 (3)
N1—H10.91 (4)C6—C51.331 (5)
N2—C21.346 (4)C6—H60.97 (4)
N2—C71.435 (4)C5—C41.408 (5)
N2—H20.86 (4)C5—H50.96 (4)
C7—C81.364 (5)C4—H40.93 (3)
C7—C161.412 (4)C12—C131.351 (6)
C11—C101.410 (5)C12—H121.00 (3)
C11—C121.420 (5)C9—H90.90 (3)
C11—C161.424 (4)C14—C131.393 (6)
C8—C91.406 (5)C14—H140.95 (4)
C8—H80.98 (3)C13—H130.99 (4)
C16—C151.430 (5)
C6—O2—C3106.8 (3)C9—C10—C11120.5 (4)
C1—N1—C2128.8 (3)C9—C10—H10122 (2)
C1—N1—H1122 (3)C11—C10—H10118 (2)
C2—N1—H1109 (3)C14—C15—C16120.6 (4)
C2—N2—C7123.0 (3)C14—C15—H15119.9 (18)
C2—N2—H2115 (2)C16—C15—H15119.5 (18)
C7—N2—H2121 (3)C5—C6—O2110.3 (3)
C8—C7—C16120.4 (3)C5—C6—H6133 (2)
C8—C7—N2119.4 (3)O2—C6—H6117 (2)
C16—C7—N2120.1 (3)C6—C5—C4106.7 (3)
C10—C11—C12122.0 (3)C6—C5—H5127 (3)
C10—C11—C16119.2 (3)C4—C5—H5126 (3)
C12—C11—C16118.8 (3)C3—C4—C5107.2 (3)
N2—C2—N1116.9 (3)C3—C4—H4122.5 (19)
N2—C2—S1123.6 (2)C5—C4—H4130.3 (19)
N1—C2—S1119.5 (2)C13—C12—C11121.5 (4)
C7—C8—C9120.7 (4)C13—C12—H12119.6 (19)
C7—C8—H8118.4 (19)C11—C12—H12119 (2)
C9—C8—H8120.9 (19)C10—C9—C8120.4 (4)
C7—C16—C11118.9 (3)C10—C9—H9120 (2)
C7—C16—C15123.4 (3)C8—C9—H9119 (2)
C11—C16—C15117.8 (3)C15—C14—C13121.3 (4)
O1—C1—N1123.1 (3)C15—C14—H14118 (2)
O1—C1—C3122.0 (3)C13—C14—H14121 (2)
N1—C1—C3114.9 (3)C12—C13—C14120.0 (4)
C4—C3—O2108.9 (3)C12—C13—H13125 (2)
C4—C3—C1133.0 (3)C14—C13—H13115 (2)
O2—C3—C1117.9 (3)
C2—N2—C7—C8103.8 (4)O1—C1—C3—C4−1.5 (6)
C2—N2—C7—C16−78.5 (4)N1—C1—C3—C4179.6 (4)
C7—N2—C2—N1−173.3 (3)O1—C1—C3—O2173.3 (3)
C7—N2—C2—S16.3 (5)N1—C1—C3—O2−5.6 (5)
C1—N1—C2—N21.9 (5)C12—C11—C10—C9−179.0 (3)
C1—N1—C2—S1−177.8 (3)C16—C11—C10—C90.1 (5)
C16—C7—C8—C91.5 (5)C7—C16—C15—C14−179.1 (3)
N2—C7—C8—C9179.1 (3)C11—C16—C15—C140.8 (5)
C8—C7—C16—C11−1.2 (4)C3—O2—C6—C5−0.1 (4)
N2—C7—C16—C11−178.9 (3)O2—C6—C5—C40.0 (5)
C8—C7—C16—C15178.7 (3)O2—C3—C4—C5−0.2 (4)
N2—C7—C16—C151.1 (4)C1—C3—C4—C5174.9 (4)
C10—C11—C16—C70.4 (4)C6—C5—C4—C30.1 (5)
C12—C11—C16—C7179.6 (3)C10—C11—C12—C13179.4 (3)
C10—C11—C16—C15−179.5 (3)C16—C11—C12—C130.3 (5)
C12—C11—C16—C15−0.4 (4)C11—C10—C9—C80.1 (5)
C2—N1—C1—O1−9.3 (6)C7—C8—C9—C10−0.9 (5)
C2—N1—C1—C3169.6 (3)C16—C15—C14—C13−1.2 (6)
C6—O2—C3—C40.2 (4)C11—C12—C13—C14−0.5 (6)
C6—O2—C3—C1−175.8 (3)C15—C14—C13—C121.0 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O10.86 (4)2.00 (4)2.698 (3)138 (3)
N1—H1···S1i0.91 (5)2.57 (5)3.455 (3)164 (4)
C5—H5···Cg1ii0.96 (4)2.85 (4)3.654 (4)143 (3)

Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2591).

References

  • Ashraf, A. A., Essam, K. A., Khaled, M. E.-M. & Mohamed El-Amir, F. H. (2007). J. Sulfur Chem.28, 73–93.
  • Cao, Y., Zhao, B., Zhang, Y.-Q. & Zhang, D.-C. (1996). Acta Cryst. C52, 1772–1774.
  • Dago, A., Simonov, M. A., Pobedimskaya, E. A., Macías, A. & Martin, A. (1987). Kristallografiya, 32, 1024–1026.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kaminsky, W., Goldberg, K. I. & West, D. X. (2002). J. Mol. Struct.605, 9–15.
  • Koch, K. R. (2001). Coord. Chem. Rev.216–217, 473–488.
  • Otazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Weiqun, Z., Kuisheng, L., Yong, Z. & Lu, L. (2003). J. Mol. Struct.657, 215–223.
  • Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.
  • Yuan, Y.-F., Ye, S.-M., Zhang, L.-Y., Wang, B., Xu, Y.-M., Wang, J.-T. & Wang, H.-G. (1997). Inorg. Chim. Acta, 256, 313–318.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography