PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m824.
Published online 2008 May 17. doi:  10.1107/S1600536808014293
PMCID: PMC2961409

trans-Bis(1H-indole-3-carbaldehyde thio­semicarbazonato-κ2 N 1,S)nickel(II)

Abstract

The Ni atom in the centrosymmetric title compound, [Ni(C10H9N4S)2], is N,S-chelated by the deprotonated Schiff bases in a square-planar geometry. The –CH=N—N=C(S)—NH2 frament is planar. Adjacent mol­ecules are linked by hydrogen bonds between the indolyl –NH (donor) site and the double-bond =N– (acceptor) site of an adjacent mol­ecule, forming a layer motif.

Related literature

For the structure of the neutral Schiff base, see: Rizal et al. (2008 [triangle]). For background literature on the medicinal activity of metal complexes of the Schiff base and related compounds, see: Husain et al. (2007 [triangle]); Wilson et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m824-scheme1.jpg

Experimental

Crystal data

  • [Ni(C10H9N4S)2]
  • M r = 493.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m824-efi1.jpg
  • a = 10.4388 (3) Å
  • b = 5.2604 (1) Å
  • c = 19.1122 (5) Å
  • β = 104.803 (2)°
  • V = 1014.66 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.19 mm−1
  • T = 100 (2) K
  • 0.14 × 0.04 × 0.01 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.851, T max = 0.988
  • 12357 measured reflections
  • 2326 independent reflections
  • 1774 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.081
  • S = 1.02
  • 2326 reflections
  • 154 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]; Dolomanov et al., 2003); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014293/sg2241sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014293/sg2241Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Science Fund (12–02-03–2031) for supporting this study, and the University of Malaya for the purchase of the diffractometer.

supplementary crystallographic information

Comment

A previous study reports the structure of 1H-indole-3-carboxaldehyde thiosemicarbazone (Rizal et al., 2008). The compound in its deprotonated form can function as a bidentate chelate, and this is confirmed in the present nickel(II) derivative (Scheme I, Fig. 1). The metal center lies on a center-of-inversion in a square planar coordination geometry. Adjacent molecules are linked by hydrogen bonds between the indolyl –NH (donor) site and the double-bond =N– (acceptor) site of an adjacent molecule to form a layer motif (Fig. 2).

Experimental

Nickel acetate tetrahydrate (0.06 g,0.22 mmol) and 1H-indole-3-carboxaldehyde thiosemicarbazone (0.10 g, 0.44 mmol), ethanol (4 ml) and water (10 ml) were sealed in a 15-ml, Teflon-lined, Parr bomb. The bomb was heated at 383 K for 2 days. The bomb when cooled to room temperature over a day to give orange plates.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The nitrogen-bound H-atoms were located in a difference Fourier map, and were refined with an N–H distance restraint of 0.88±0.01 Å; their temperature factors were freely refined.

Figures

Fig. 1.
Thermal ellipsoid plot of Ni(C10H9N4S)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The molecule lies on a center-of-inversion. Unlabeled atoms are related to the labeled ones by this symmetry element.
Fig. 2.
OLEX (Dolomanov et al., 2003) representation of the hydrogen-bonded layer motif.

Crystal data

[Ni(C10H9N4S)2]F000 = 508
Mr = 493.25Dx = 1.614 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1799 reflections
a = 10.4388 (3) Åθ = 2.6–24.7º
b = 5.2604 (1) ŵ = 1.19 mm1
c = 19.1122 (5) ÅT = 100 (2) K
β = 104.803 (2)ºPlate, orange
V = 1014.66 (4) Å30.14 × 0.04 × 0.01 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer2326 independent reflections
Radiation source: fine-focus sealed tube1774 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.062
T = 100(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.0º
Absorption correction: Multi-scan(SADABS; Sheldrick, 1996)h = −12→13
Tmin = 0.851, Tmax = 0.988k = −6→6
12357 measured reflectionsl = −24→24

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081  w = 1/[σ2(Fo2) + (0.0362P)2 + 0.5143P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2326 reflectionsΔρmax = 0.43 e Å3
154 parametersΔρmin = −0.30 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.50000.50000.01261 (12)
S10.33444 (6)0.74950 (12)0.45463 (3)0.01747 (15)
N10.6654 (2)1.1528 (4)0.78929 (11)0.0171 (5)
H1N0.637 (3)1.262 (5)0.8165 (14)0.045 (10)*
N20.52205 (19)0.6972 (4)0.58664 (10)0.0143 (4)
N30.42554 (19)0.8723 (4)0.59419 (10)0.0153 (4)
N40.2345 (2)1.0700 (4)0.53342 (12)0.0205 (5)
H4N10.240 (3)1.177 (5)0.5691 (12)0.042 (10)*
H4N20.184 (3)1.121 (6)0.4919 (10)0.043 (10)*
C10.7786 (2)0.8186 (5)0.76257 (12)0.0154 (5)
C20.8845 (2)0.6471 (5)0.77478 (13)0.0182 (5)
H20.88690.51590.74100.022*
C30.9859 (2)0.6731 (5)0.83732 (13)0.0195 (5)
H31.05880.55900.84600.023*
C40.9830 (2)0.8646 (5)0.88809 (13)0.0190 (5)
H41.05380.87660.93060.023*
C50.8795 (2)1.0361 (5)0.87760 (12)0.0178 (5)
H50.87741.16590.91180.021*
C60.7782 (2)1.0092 (5)0.81421 (12)0.0159 (5)
C70.5945 (2)1.0621 (5)0.72458 (12)0.0166 (5)
H70.51321.13090.69690.020*
C80.6586 (2)0.8537 (5)0.70493 (12)0.0166 (5)
C90.6276 (2)0.6972 (5)0.64112 (12)0.0163 (5)
H90.69350.57610.63810.020*
C100.3354 (2)0.9073 (5)0.53374 (13)0.0159 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0129 (2)0.0143 (2)0.0104 (2)0.00022 (19)0.00260 (16)−0.00047 (18)
S10.0180 (3)0.0207 (3)0.0124 (3)0.0042 (3)0.0014 (2)−0.0010 (2)
N10.0177 (11)0.0189 (11)0.0140 (10)0.0007 (9)0.0029 (8)−0.0039 (9)
N20.0161 (10)0.0141 (10)0.0127 (9)0.0014 (8)0.0036 (8)−0.0004 (8)
N30.0155 (11)0.0171 (11)0.0137 (10)0.0021 (9)0.0047 (8)−0.0002 (8)
N40.0225 (12)0.0210 (12)0.0172 (11)0.0080 (9)0.0035 (9)−0.0025 (9)
C10.0156 (12)0.0156 (12)0.0151 (11)−0.0034 (10)0.0042 (10)0.0002 (9)
C20.0190 (13)0.0192 (13)0.0177 (12)−0.0019 (10)0.0068 (10)−0.0025 (10)
C30.0153 (13)0.0225 (14)0.0205 (12)0.0005 (11)0.0040 (10)0.0028 (11)
C40.0166 (13)0.0245 (14)0.0148 (11)−0.0037 (11)0.0018 (10)−0.0005 (10)
C50.0196 (13)0.0207 (14)0.0127 (11)−0.0040 (11)0.0034 (10)−0.0005 (10)
C60.0172 (12)0.0167 (12)0.0151 (11)−0.0011 (11)0.0063 (9)0.0013 (10)
C70.0166 (12)0.0190 (14)0.0137 (11)−0.0016 (10)0.0030 (10)−0.0003 (9)
C80.0191 (13)0.0177 (13)0.0135 (11)−0.0022 (10)0.0051 (10)0.0001 (10)
C90.0175 (12)0.0176 (13)0.0145 (11)0.0008 (10)0.0055 (10)0.0003 (10)
C100.0180 (13)0.0140 (12)0.0182 (12)−0.0033 (10)0.0092 (10)0.0007 (10)

Geometric parameters (Å, °)

Ni1—N2i1.919 (2)C1—C61.408 (3)
Ni1—N21.918 (2)C1—C81.453 (3)
Ni1—S1i2.1669 (6)C2—C31.386 (3)
Ni1—S12.1669 (6)C2—H20.9500
S1—C101.723 (2)C3—C41.404 (4)
N1—C71.355 (3)C3—H30.9500
N1—C61.377 (3)C4—C51.382 (4)
N1—H1n0.88 (3)C4—H40.9500
N2—C91.309 (3)C5—C61.397 (3)
N2—N31.399 (3)C5—H50.9500
N3—C101.303 (3)C7—C81.385 (3)
N4—C101.355 (3)C7—H70.9500
N4—H4n10.88 (3)C8—C91.438 (3)
N4—H4n20.88 (3)C9—H90.9500
C1—C21.400 (3)
N2i—Ni1—N2180.000 (1)C2—C3—H3119.3
N2i—Ni1—S1i85.72 (6)C4—C3—H3119.3
N2—Ni1—S185.72 (6)C5—C4—C3121.5 (2)
N2—Ni1—S1i94.28 (6)C5—C4—H4119.3
N2i—Ni1—S194.28 (6)C3—C4—H4119.3
S1i—Ni1—S1180.0C4—C5—C6116.8 (2)
C10—S1—Ni196.63 (9)C4—C5—H5121.6
C7—N1—C6110.0 (2)C6—C5—H5121.6
C7—N1—H1N126 (2)N1—C6—C5129.5 (2)
C6—N1—H1N123 (2)N1—C6—C1107.7 (2)
C9—N2—N3113.60 (19)C5—C6—C1122.9 (2)
C9—N2—Ni1125.30 (17)N1—C7—C8109.7 (2)
N3—N2—Ni1120.96 (14)N1—C7—H7125.1
C10—N3—N2112.16 (19)C8—C7—H7125.1
C10—N4—H4N1121 (2)C7—C8—C9131.6 (2)
C10—N4—H4N2119 (2)C7—C8—C1106.1 (2)
H4N1—N4—H4N2114 (3)C9—C8—C1122.2 (2)
C2—C1—C6119.1 (2)N2—C9—C8129.5 (2)
C2—C1—C8134.4 (2)N2—C9—H9115.3
C6—C1—C8106.5 (2)C8—C9—H9115.3
C3—C2—C1118.5 (2)N3—C10—N4118.5 (2)
C3—C2—H2120.8N3—C10—S1123.44 (19)
C1—C2—H2120.8N4—C10—S1118.03 (18)
C2—C3—C4121.3 (2)
N2i—Ni1—S1—C10172.73 (10)C8—C1—C6—N1−0.4 (3)
N2—Ni1—S1—C10−7.27 (10)C2—C1—C6—C50.1 (4)
S1i—Ni1—N2—C915.3 (2)C8—C1—C6—C5−179.6 (2)
S1—Ni1—N2—C9−164.7 (2)C6—N1—C7—C80.3 (3)
S1i—Ni1—N2—N3−169.40 (16)N1—C7—C8—C9−177.4 (2)
S1—Ni1—N2—N310.60 (16)N1—C7—C8—C1−0.5 (3)
C9—N2—N3—C10166.4 (2)C2—C1—C8—C7−179.1 (3)
Ni1—N2—N3—C10−9.4 (3)C6—C1—C8—C70.6 (3)
C6—C1—C2—C3−0.5 (4)C2—C1—C8—C9−1.8 (4)
C8—C1—C2—C3179.2 (3)C6—C1—C8—C9177.8 (2)
C1—C2—C3—C40.6 (4)N3—N2—C9—C8−2.0 (4)
C2—C3—C4—C5−0.4 (4)Ni1—N2—C9—C8173.7 (2)
C3—C4—C5—C60.1 (4)C7—C8—C9—N2−7.0 (5)
C7—N1—C6—C5179.2 (2)C1—C8—C9—N2176.5 (2)
C7—N1—C6—C10.1 (3)N2—N3—C10—N4179.1 (2)
C4—C5—C6—N1−178.9 (2)N2—N3—C10—S11.4 (3)
C4—C5—C6—C10.1 (4)Ni1—S1—C10—N35.4 (2)
C2—C1—C6—N1179.3 (2)Ni1—S1—C10—N4−172.37 (19)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···N3ii0.88 (3)2.06 (2)2.876 (3)155 (3)

Symmetry codes: (ii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2241).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst.36, 1283–1284.
  • Husain, K., Abid, M. & Azam, A. (2007). Eur. J. Med. Chem.42, 1300–1308. [PubMed]
  • Rizal, R. M., Ali, H. M. & Ng, S. W. (2008). Acta Cryst. E64, o919–o920. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.
  • Wilson, B. A., Venkatraman, R., Whitaker, C. & Tillison, Q. (2005). Int. J. Env. Res. Pub. Health, 2, 170–174. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography