PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m843.
Published online 2008 May 30. doi:  10.1107/S1600536808015390
PMCID: PMC2961407

Bis[(E)-4-chloro-2-(cyclo­hexyl­imino­meth­yl)phenolato]nickel(II)

Abstract

In the title mononuclear nickel(II) complex, [Ni(C13H15ClNO)2], the NiII atom is four-coordinated in a tetra­hedral geometry by the N and O atoms of the two Schiff base ligands.

Related literature

For related structures, see: Cheng et al. (2007 [triangle]); Li et al. (2007 [triangle]); Qiu et al. (2006 [triangle]); Shi et al. (2007 [triangle]); Wang et al. (2005 [triangle]); Zhu et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m843-scheme1.jpg

Experimental

Crystal data

  • [Ni(C13H15ClNO)2]
  • M r = 532.13
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m843-efi1.jpg
  • a = 14.871 (3) Å
  • b = 13.563 (3) Å
  • c = 24.993 (5) Å
  • V = 5040.9 (17) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.01 mm−1
  • T = 298 (2) K
  • 0.42 × 0.38 × 0.37 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.663, T max = 0.686
  • 4933 measured reflections
  • R int = 0.023
  • 4693 independent reflections
  • 2416 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.162
  • S = 1.04
  • 4693 reflections
  • 298 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.45 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015390/sj2506sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015390/sj2506Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors appreciate the generous financial support of this work by the Chinese Funds for Zhicheng Project (No. 2006BAC02A11) and Wuhan Yindao project (No. 20066009138-07).

supplementary crystallographic information

Comment

As part of our ongoing interest in the structure of nickel(II) complexes (Zhu et al., 2003), we report herein the crystal structure of the title compound, a new mononuclear nickel(II) complex, (I), Fig. 1, derived from the Schiff base ligand 4-chloro-2-(cyclohexyliminomethyl)phenol.

The NiII atom in (I) is four-coordinate in a tetrahedral geometry, binding to the N and two O atoms of the two Schiff base ligands. The coordinate bond values (Table 1) are comparable to values observed in other similar nickel(II) complexes (Shi et al., 2007; Li et al., 2007; Cheng et al., 2007; Qiu et al., 2006; Wang et al., 2005).

Experimental

5-Chlorosalicylaldehyde (15.6 mg, 0.1 mmol), cyclohexylamine (9.9 mg, 0.1 mmol), and NiCl2.6H2O (23.8 mg, 0.1 mmol) were dissolved in methanol (30 ml). The mixture was stirred for 30 min at room temperature. The resulting solution was left in air for a few days, yielding green crystals.

Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms with C–H distances in the range 0.93–0.98 Å, and with Uiso(H) set at 1.2Ueq(C).

Figures

Fig. 1.
The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Ni(C13H15ClNO)2]F000 = 2224
Mr = 532.13Dx = 1.402 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2013 reflections
a = 14.871 (3) Åθ = 2.3–25.3º
b = 13.563 (3) ŵ = 1.01 mm1
c = 24.993 (5) ÅT = 298 (2) K
V = 5040.9 (17) Å3Block, green
Z = 80.42 × 0.38 × 0.37 mm

Data collection

Bruker SMART CCD area-detector diffractometer4693 independent reflections
Radiation source: fine-focus sealed tube2416 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 298(2) Kθmax = 25.5º
ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −17→18
Tmin = 0.663, Tmax = 0.686k = −15→16
4933 measured reflectionsl = −30→30

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.162  w = 1/[σ2(Fo2) + (0.0617P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4693 reflectionsΔρmax = 0.32 e Å3
298 parametersΔρmin = −0.45 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.14197 (4)0.91723 (5)0.19419 (3)0.0418 (2)
Cl1−0.11240 (16)0.61620 (16)0.01142 (8)0.1021 (8)
Cl20.32265 (12)1.23468 (13)0.39664 (7)0.0768 (6)
O10.1603 (3)0.8322 (3)0.13420 (17)0.0644 (12)
O20.2180 (3)0.9080 (3)0.25567 (16)0.0586 (11)
N10.0151 (3)0.8732 (3)0.20947 (18)0.0460 (12)
N20.1735 (3)1.0591 (3)0.17874 (19)0.0482 (13)
C10.0059 (4)0.7796 (4)0.1256 (2)0.0473 (15)
C20.0954 (4)0.7884 (4)0.1071 (3)0.0524 (16)
C30.1154 (4)0.7475 (5)0.0575 (3)0.0618 (17)
H30.17290.75600.04350.074*
C40.0536 (5)0.6954 (5)0.0286 (3)0.069 (2)
H40.06990.6676−0.00400.083*
C5−0.0337 (5)0.6836 (5)0.0478 (3)0.0648 (19)
C6−0.0575 (4)0.7255 (4)0.0950 (2)0.0586 (17)
H6−0.11620.71870.10750.070*
C7−0.0277 (4)0.8180 (4)0.1755 (2)0.0501 (16)
H7−0.08650.80140.18440.060*
C8−0.0329 (4)0.9005 (4)0.2591 (2)0.0486 (15)
H8−0.09700.88600.25450.058*
C90.0027 (5)0.8394 (5)0.3045 (2)0.0683 (19)
H9A0.06730.84850.30720.082*
H9B−0.00860.77030.29730.082*
C10−0.0411 (5)0.8677 (5)0.3573 (3)0.083 (2)
H10A−0.10470.85200.35600.100*
H10B−0.01420.82980.38610.100*
C11−0.0291 (5)0.9768 (6)0.3682 (3)0.079 (2)
H11A−0.05920.99440.40130.095*
H11B0.03440.99200.37210.095*
C12−0.0682 (5)1.0352 (5)0.3224 (3)0.072 (2)
H12A−0.13201.02120.31950.087*
H12B−0.06121.10510.32950.087*
C13−0.0222 (4)1.0095 (4)0.2705 (3)0.0577 (17)
H13A0.04121.02590.27280.069*
H13B−0.04831.04760.24160.069*
C140.2385 (3)1.0838 (4)0.2672 (2)0.0449 (14)
C150.2402 (4)0.9843 (5)0.2852 (3)0.0498 (16)
C160.2693 (4)0.9689 (5)0.3380 (3)0.0601 (18)
H160.27190.90450.35070.072*
C170.2941 (4)1.0439 (5)0.3720 (3)0.0622 (18)
H170.31181.03040.40690.075*
C180.2920 (4)1.1408 (5)0.3530 (2)0.0530 (16)
C190.2665 (4)1.1603 (4)0.3020 (2)0.0520 (16)
H190.26741.22500.28970.062*
C200.2118 (4)1.1130 (4)0.2144 (2)0.0507 (15)
H200.22361.17810.20490.061*
C210.1556 (4)1.1016 (4)0.1257 (2)0.0551 (17)
H210.16591.17290.12750.066*
C220.2191 (4)1.0582 (5)0.0844 (2)0.0644 (19)
H22A0.21570.98680.08600.077*
H22B0.28021.07740.09310.077*
C230.1970 (4)1.0921 (6)0.0278 (2)0.076 (2)
H23A0.20831.16230.02470.092*
H23B0.23601.05840.00260.092*
C240.0995 (4)1.0709 (5)0.0138 (3)0.071 (2)
H24A0.08941.00020.01350.085*
H24B0.08631.0961−0.02170.085*
C250.0371 (4)1.1194 (5)0.0545 (3)0.0648 (19)
H25A0.04441.19040.05300.078*
H25B−0.02491.10410.04570.078*
C260.0575 (4)1.0836 (5)0.1107 (2)0.0575 (16)
H26A0.04461.01360.11310.069*
H26B0.01891.11770.13590.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0369 (4)0.0331 (4)0.0554 (5)−0.0024 (3)0.0001 (4)0.0037 (4)
Cl10.1222 (19)0.1082 (17)0.0760 (14)−0.0257 (14)−0.0106 (13)−0.0268 (12)
Cl20.0907 (13)0.0690 (12)0.0706 (12)−0.0022 (10)−0.0220 (10)−0.0051 (10)
O10.054 (3)0.055 (3)0.085 (3)−0.005 (2)0.012 (2)−0.010 (2)
O20.064 (3)0.038 (2)0.074 (3)−0.003 (2)−0.008 (2)0.006 (2)
N10.047 (3)0.039 (3)0.052 (3)−0.002 (2)0.007 (3)−0.002 (2)
N20.045 (3)0.045 (3)0.055 (3)−0.003 (2)−0.012 (2)0.006 (2)
C10.057 (4)0.039 (3)0.047 (4)0.002 (3)0.007 (3)−0.001 (3)
C20.055 (4)0.037 (3)0.065 (5)0.003 (3)0.012 (4)0.007 (3)
C30.064 (4)0.056 (4)0.066 (5)0.008 (4)0.013 (4)−0.001 (4)
C40.097 (6)0.055 (4)0.055 (4)0.016 (4)0.011 (4)−0.003 (4)
C50.090 (5)0.051 (4)0.054 (4)0.000 (4)0.000 (4)−0.006 (3)
C60.064 (4)0.059 (4)0.053 (4)0.000 (4)−0.003 (4)0.004 (3)
C70.045 (4)0.046 (4)0.059 (4)−0.005 (3)0.004 (3)0.000 (3)
C80.044 (3)0.045 (4)0.057 (4)−0.005 (3)0.002 (3)−0.003 (3)
C90.097 (5)0.052 (4)0.057 (4)0.004 (4)0.017 (4)0.001 (4)
C100.107 (6)0.074 (5)0.070 (5)0.006 (5)0.011 (5)−0.001 (4)
C110.085 (6)0.087 (6)0.064 (5)0.000 (5)0.005 (4)−0.021 (5)
C120.081 (5)0.059 (4)0.077 (5)0.002 (4)0.005 (4)−0.020 (4)
C130.057 (4)0.043 (4)0.073 (5)0.004 (3)0.009 (3)−0.010 (3)
C140.038 (3)0.043 (3)0.054 (4)−0.003 (3)−0.005 (3)0.010 (3)
C150.039 (3)0.048 (4)0.062 (4)0.003 (3)−0.001 (3)0.008 (3)
C160.054 (4)0.052 (4)0.074 (5)0.006 (3)−0.007 (4)0.026 (4)
C170.057 (4)0.072 (5)0.057 (4)−0.001 (4)−0.006 (3)0.007 (4)
C180.049 (4)0.056 (4)0.054 (4)0.000 (3)−0.009 (3)0.004 (3)
C190.046 (4)0.048 (4)0.062 (4)0.001 (3)−0.003 (3)0.007 (4)
C200.045 (3)0.044 (4)0.063 (4)0.000 (3)−0.005 (3)0.011 (3)
C210.059 (4)0.039 (4)0.067 (4)−0.004 (3)−0.019 (3)0.006 (3)
C220.045 (4)0.084 (5)0.064 (4)−0.004 (3)−0.005 (3)0.017 (4)
C230.063 (5)0.099 (6)0.067 (5)−0.013 (4)−0.007 (4)0.010 (4)
C240.069 (5)0.081 (5)0.064 (5)−0.004 (4)−0.015 (4)0.003 (4)
C250.063 (4)0.060 (4)0.072 (5)0.001 (4)−0.021 (4)0.002 (4)
C260.053 (4)0.053 (4)0.066 (4)0.004 (3)−0.009 (3)0.000 (4)

Geometric parameters (Å, °)

Ni1—O11.911 (4)C11—H11B0.9700
Ni1—O21.911 (4)C12—C131.508 (8)
Ni1—N12.016 (5)C12—H12A0.9700
Ni1—N22.018 (5)C12—H12B0.9700
Cl1—C51.740 (7)C13—H13A0.9700
Cl2—C181.737 (6)C13—H13B0.9700
O1—C21.321 (7)C14—C191.417 (7)
O2—C151.314 (7)C14—C151.423 (7)
N1—C71.298 (7)C14—C201.434 (7)
N1—C81.478 (7)C15—C161.404 (8)
N2—C201.286 (7)C16—C171.374 (8)
N2—C211.470 (7)C16—H160.9300
C1—C21.415 (8)C17—C181.398 (8)
C1—C61.419 (8)C17—H170.9300
C1—C71.440 (7)C18—C191.356 (7)
C2—C31.390 (8)C19—H190.9300
C3—C41.366 (8)C20—H200.9300
C3—H30.9300C21—C221.516 (8)
C4—C51.394 (9)C21—C261.526 (7)
C4—H40.9300C21—H210.9800
C5—C61.358 (8)C22—C231.525 (8)
C6—H60.9300C22—H22A0.9700
C7—H70.9300C22—H22B0.9700
C8—C91.502 (8)C23—C241.520 (8)
C8—C131.514 (7)C23—H23A0.9700
C8—H80.9800C23—H23B0.9700
C9—C101.520 (8)C24—C251.527 (8)
C9—H9A0.9700C24—H24A0.9700
C9—H9B0.9700C24—H24B0.9700
C10—C111.516 (9)C25—C261.516 (8)
C10—H10A0.9700C25—H25A0.9700
C10—H10B0.9700C25—H25B0.9700
C11—C121.508 (9)C26—H26A0.9700
C11—H11A0.9700C26—H26B0.9700
O1—Ni1—O2120.45 (18)H12A—C12—H12B108.0
O1—Ni1—N195.93 (18)C12—C13—C8109.9 (5)
O2—Ni1—N1112.44 (18)C12—C13—H13A109.7
O1—Ni1—N2113.09 (19)C8—C13—H13A109.7
O2—Ni1—N294.54 (17)C12—C13—H13B109.7
N1—Ni1—N2122.42 (18)C8—C13—H13B109.7
C2—O1—Ni1124.8 (4)H13A—C13—H13B108.2
C15—O2—Ni1123.3 (4)C19—C14—C15119.7 (5)
C7—N1—C8117.2 (5)C19—C14—C20116.4 (5)
C7—N1—Ni1120.4 (4)C15—C14—C20124.0 (5)
C8—N1—Ni1122.4 (4)O2—C15—C16119.3 (6)
C20—N2—C21118.8 (5)O2—C15—C14124.4 (6)
C20—N2—Ni1120.8 (4)C16—C15—C14116.3 (6)
C21—N2—Ni1120.3 (4)C17—C16—C15123.6 (6)
C2—C1—C6119.5 (6)C17—C16—H16118.2
C2—C1—C7125.5 (6)C15—C16—H16118.2
C6—C1—C7115.0 (5)C16—C17—C18118.7 (6)
O1—C2—C3118.7 (6)C16—C17—H17120.6
O1—C2—C1123.8 (6)C18—C17—H17120.6
C3—C2—C1117.4 (6)C19—C18—C17120.6 (6)
C4—C3—C2122.2 (6)C19—C18—Cl2121.4 (5)
C4—C3—H3118.9C17—C18—Cl2118.1 (5)
C2—C3—H3118.9C18—C19—C14121.1 (6)
C3—C4—C5120.3 (6)C18—C19—H19119.5
C3—C4—H4119.8C14—C19—H19119.5
C5—C4—H4119.8N2—C20—C14127.1 (5)
C6—C5—C4119.6 (7)N2—C20—H20116.5
C6—C5—Cl1119.9 (6)C14—C20—H20116.5
C4—C5—Cl1120.5 (6)N2—C21—C22110.4 (5)
C5—C6—C1120.8 (6)N2—C21—C26109.4 (5)
C5—C6—H6119.6C22—C21—C26111.4 (5)
C1—C6—H6119.6N2—C21—H21108.5
N1—C7—C1127.2 (6)C22—C21—H21108.5
N1—C7—H7116.4C26—C21—H21108.5
C1—C7—H7116.4C21—C22—C23112.4 (5)
N1—C8—C9109.0 (5)C21—C22—H22A109.1
N1—C8—C13110.7 (5)C23—C22—H22A109.1
C9—C8—C13111.0 (5)C21—C22—H22B109.1
N1—C8—H8108.7C23—C22—H22B109.1
C9—C8—H8108.7H22A—C22—H22B107.9
C13—C8—H8108.7C24—C23—C22111.2 (5)
C8—C9—C10111.5 (5)C24—C23—H23A109.4
C8—C9—H9A109.3C22—C23—H23A109.4
C10—C9—H9A109.3C24—C23—H23B109.4
C8—C9—H9B109.3C22—C23—H23B109.4
C10—C9—H9B109.3H23A—C23—H23B108.0
H9A—C9—H9B108.0C23—C24—C25110.2 (5)
C11—C10—C9110.6 (6)C23—C24—H24A109.6
C11—C10—H10A109.5C25—C24—H24A109.6
C9—C10—H10A109.5C23—C24—H24B109.6
C11—C10—H10B109.5C25—C24—H24B109.6
C9—C10—H10B109.5H24A—C24—H24B108.1
H10A—C10—H10B108.1C26—C25—C24111.0 (5)
C12—C11—C10109.3 (6)C26—C25—H25A109.4
C12—C11—H11A109.8C24—C25—H25A109.4
C10—C11—H11A109.8C26—C25—H25B109.4
C12—C11—H11B109.8C24—C25—H25B109.4
C10—C11—H11B109.8H25A—C25—H25B108.0
H11A—C11—H11B108.3C25—C26—C21111.6 (5)
C13—C12—C11110.9 (6)C25—C26—H26A109.3
C13—C12—H12A109.5C21—C26—H26A109.3
C11—C12—H12A109.5C25—C26—H26B109.3
C13—C12—H12B109.5C21—C26—H26B109.3
C11—C12—H12B109.5H26A—C26—H26B108.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2506).

References

  • Cheng, K., You, Z.-L. & Zhu, H.-L. (2007). Aust. J. Chem.60, 375–379.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Li, Y.-G., Shi, D.-H., Zhu, H.-L., Yan, H. & Ng, S. W. (2007). Inorg. Chim. Acta, 360, 2881–2889.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst.A24, 351–359.
  • Qiu, X.-Y., Ma, J.-L., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, m1289–m1290.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, D.-H., You, Z.-L., Xu, C., Zhang, Q. & Zhu, H.-L. (2007). Inorg. Chem. Commun.10, 404–406.
  • Wang, S.-F., Xue, J.-Y., Shi, L., Zhu, H.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1481–m1483.
  • Zhu, H.-L., Zeng, Q.-F., Xia, D.-S., Liu, X.-Y. & Wang, D.-Q. (2003). Acta Cryst. E59, m777–m779.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography