PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1117.
Published online 2008 May 21. doi:  10.1107/S1600536808014591
PMCID: PMC2961403

4-Bromo-8-methoxy­quinoline

Abstract

The non-H atoms of the title mol­ecule, C10H8BrNO, are essentially coplanar. In the crystal structure, mol­ecules are linked by weak inter­molecular C—H(...)π(arene) inter­actions, forming one-dimensional chains along the a axis.

Related literature

For related literature, see: Michael (2008 [triangle]); Kulkarni et al. (2006 [triangle]); Irving & Pinnington (1957 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1117-scheme1.jpg

Experimental

Crystal data

  • C10H8BrNO
  • M r = 238.08
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1117-efi1.jpg
  • a = 5.1615 (1) Å
  • b = 12.1337 (6) Å
  • c = 14.2436 (7) Å
  • V = 892.05 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.56 mm−1
  • T = 150 (1) K
  • 0.30 × 0.12 × 0.11 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing 1995 [triangle]) T min = 0.545, T max = 0.607
  • 6134 measured reflections
  • 2026 independent reflections
  • 1872 reflections with I > 2σ(I)
  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.059
  • S = 1.01
  • 2026 reflections
  • 120 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.40 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 815 Friedel pairs
  • Flack parameter: −0.017 (11)

Data collection: COLLECT (Nonius, 2002 [triangle]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]) and SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014591/pv2082sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014591/pv2082Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Dr Peter P. Antich and Dr Frederick J. Bonte for helpful discussions and support. Financial support for this work was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC).

supplementary crystallographic information

Comment

Quinoline derivatatives are established chelating agents and also have applications as precursors for pesticides and pharmaceuticals (Michael, 2008). Our laboratories are pursuing the development of radiohalogenated 8-hydroxyquinoline derivatives for positron emission tomography (PET) and single photon emission computed tomography (SPECT), specifically to image extracellular glial deposition of amyloid plaque protein in Alzheimer's disease and matrix metalloproteinases in tumours (Kulkarni et al., 2006). 4-Bromo-8-methoxyquinoline, first reported by Irving & Pinnington (1957) may be used as a precursor for radiohalogenation reactions to prepare labelled 8-hydroxyquinoline-based PET or SPECT radiopharmaceuticals. To our surprise, neutral compounds bearing a 4-halogen substituted, 8-phenoxyquinoline core have not yet been studied by single-crystal X-ray crystallography. In the present study we report the crystal structure of the title compound at 150 K.

The non-hydrogen atoms of title molecule (Fig. 1), C10H8BrNO, are essentially co-planar (r.m.s. deviation of all non-H atoms = 0.0242 Å). In the crystal structure, molecules are linked by weak intermolecuar C—H···π(arene) interactions to form one-dimensional chains along the a axis (Fig. 2). There are no other hydrogen bonds or π···π stacking interactions.

Experimental

X-ray quality crystals were obtained by evaporation of a solution of the title compound (ECA International Corporation, Palatine, Illinois, USA) in chloroform.

Refinement

H atoms were placed in calculated positions with C—H = 0.95Å (aryl) and 0.98Å (methyl) and were included in the refinement in the riding-model approximation with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
Molecular structure showing 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
Fig. 2.
Part of the crystal structure showing weak C—H···π(arene) interactions as dashed lines.

Crystal data

C10H8BrNOF000 = 472
Mr = 238.08Dx = 1.773 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6134 reflections
a = 5.1615 (1) Åθ = 2.9–27.5º
b = 12.1337 (6) ŵ = 4.56 mm1
c = 14.2436 (7) ÅT = 150 (1) K
V = 892.05 (6) Å3Needle, colourless
Z = 40.30 × 0.12 × 0.11 mm

Data collection

Nonius KappaCCD diffractometer2026 independent reflections
Radiation source: fine-focus sealed tube1872 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.036
Detector resolution: 9 pixels mm-1θmax = 27.5º
T = 150(2) Kθmin = 2.9º
[var phi] scans and ω scans with κ offsetsh = −5→6
Absorption correction: multi-scan(SORTAV; Blessing 1995)k = −14→15
Tmin = 0.545, Tmax = 0.607l = −18→18
6134 measured reflections

Refinement

Refinement on F2H-atom parameters constrained
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0306P)2 + 0.0333P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.001
wR(F2) = 0.059Δρmax = 0.38 e Å3
S = 1.01Δρmin = −0.40 e Å3
2026 reflectionsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
120 parametersExtinction coefficient: 0.0062 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 815 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.017 (11)
Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.02034 (5)0.36147 (2)0.509948 (18)0.02940 (11)
O10.1007 (3)0.62674 (16)0.72708 (14)0.0259 (4)
N10.4260 (4)0.64140 (17)0.58326 (14)0.0233 (4)
C10.5884 (5)0.6481 (2)0.51287 (18)0.0278 (6)
H1A0.58190.71260.47520.033*
C20.7717 (5)0.5671 (2)0.48878 (19)0.0268 (6)
H2A0.88420.57680.43660.032*
C30.7833 (5)0.4746 (2)0.54217 (19)0.0239 (6)
C40.6190 (5)0.4611 (2)0.62176 (17)0.0188 (5)
C50.6239 (5)0.3694 (2)0.68244 (18)0.0232 (6)
H5A0.74290.31090.67180.028*
C60.4556 (5)0.3650 (2)0.75705 (17)0.0243 (6)
H6A0.46240.30380.79860.029*
C70.2739 (5)0.4487 (2)0.77325 (18)0.0235 (6)
H7A0.15580.44240.82410.028*
C80.2656 (5)0.5400 (2)0.71586 (17)0.0195 (5)
C90.4408 (5)0.54916 (19)0.63810 (16)0.0199 (5)
C10−0.0731 (5)0.6201 (2)0.80535 (18)0.0271 (7)
H10C−0.17840.68720.80830.041*
H10D0.02690.61260.86350.041*
H10A−0.18650.55590.79780.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.02472 (15)0.03108 (16)0.03239 (16)0.00303 (10)0.00306 (11)−0.00756 (11)
O10.0264 (10)0.0255 (11)0.0259 (10)0.0030 (8)0.0047 (7)0.0004 (8)
N10.0281 (10)0.0212 (11)0.0206 (11)−0.0009 (9)−0.0021 (8)0.0001 (10)
C10.0339 (13)0.0259 (14)0.0237 (14)−0.0019 (10)0.0030 (10)0.0087 (14)
C20.0265 (12)0.0299 (14)0.0240 (14)−0.0065 (10)0.0049 (12)0.0001 (13)
C30.0215 (13)0.0257 (14)0.0246 (15)−0.0015 (10)−0.0025 (10)−0.0078 (12)
C40.0210 (13)0.0184 (13)0.0169 (13)−0.0037 (9)−0.0018 (9)−0.0016 (11)
C50.0224 (12)0.0215 (14)0.0257 (14)0.0016 (11)−0.0064 (10)−0.0019 (12)
C60.0328 (15)0.0176 (13)0.0225 (13)−0.0037 (13)−0.0074 (11)0.0035 (11)
C70.0257 (14)0.0258 (15)0.0191 (14)−0.0088 (11)0.0018 (11)−0.0010 (11)
C80.0208 (13)0.0185 (13)0.0193 (13)−0.0003 (10)−0.0021 (10)−0.0014 (11)
C90.0207 (12)0.0204 (13)0.0186 (12)−0.0042 (10)−0.0046 (10)0.0010 (10)
C100.0240 (14)0.0314 (17)0.0258 (15)0.0015 (12)0.0047 (11)−0.0028 (12)

Geometric parameters (Å, °)

Br1—C31.895 (2)C4—C91.429 (3)
O1—C81.362 (3)C5—C61.374 (4)
O1—C101.433 (3)C5—H5A0.9500
N1—C11.309 (3)C6—C71.402 (4)
N1—C91.367 (3)C6—H6A0.9500
C1—C21.407 (4)C7—C81.378 (4)
C1—H1A0.9500C7—H7A0.9500
C2—C31.357 (3)C8—C91.434 (3)
C2—H2A0.9500C10—H10C0.9800
C3—C41.425 (3)C10—H10D0.9800
C4—C51.409 (4)C10—H10A0.9800
C8—O1—C10116.0 (2)C5—C6—H6A119.3
C1—N1—C9116.9 (2)C7—C6—H6A119.3
N1—C1—C2125.0 (2)C8—C7—C6120.4 (2)
N1—C1—H1A117.5C8—C7—H7A119.8
C2—C1—H1A117.5C6—C7—H7A119.8
C3—C2—C1118.1 (2)O1—C8—C7124.8 (2)
C3—C2—H2A121.0O1—C8—C9115.1 (2)
C1—C2—H2A121.0C7—C8—C9120.0 (2)
C2—C3—C4121.0 (2)N1—C9—C4123.7 (2)
C2—C3—Br1119.4 (2)N1—C9—C8118.0 (2)
C4—C3—Br1119.58 (19)C4—C9—C8118.3 (2)
C5—C4—C3124.6 (2)O1—C10—H10C109.5
C5—C4—C9120.1 (2)O1—C10—H10D109.5
C3—C4—C9115.3 (2)H10C—C10—H10D109.5
C6—C5—C4119.6 (3)O1—C10—H10A109.5
C6—C5—H5A120.2H10C—C10—H10A109.5
C4—C5—H5A120.2H10D—C10—H10A109.5
C5—C6—C7121.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10A···Cgi0.982.663.531 (3)148

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2082).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Irving, H. & Pinnington, A. R. (1957). J. Chem. Soc. pp. 285–290.
  • Kulkarni, P., Arora, V., Bennett, M., Roney, C., Partridge, K., Lewis, M., Antich, P. & Bonte, F. (2006). J. Nucl. Med.47, 509P–510P.
  • Michael, J. P. (2008). Nat. Prod. Rep.25, 166–187. [PubMed]
  • Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A edited by C. W. Carter Jr & R. M. Sweet pp. 307–326. London: Academic press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography