PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1024.
Published online 2008 May 10. doi:  10.1107/S160053680801307X
PMCID: PMC2961401

Benzyl 3-[(E)-furfuryl­idene]dithio­carbazate

Abstract

In the title compound, C13H12N2OS2, the mol­ecule assumes an E configuration, with the furan ring and dithio­carbazate units located on opposite sides of the N=C double bond. In the crystal structure, mol­ecules are linked via two inter­molecular N—H(...)S hydrogen bonds to form centrosymmetric dimers.

Related literature

For general background, see: Okabe et al. (1993 [triangle]). For related structures, see: Shan et al. (2006 [triangle], 2008 [triangle]). For the synthesis and background, see: Hu et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1024-scheme1.jpg

Experimental

Crystal data

  • C13H12N2OS2
  • M r = 276.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1024-efi1.jpg
  • a = 4.8331 (11) Å
  • b = 12.040 (3) Å
  • c = 12.549 (3) Å
  • α = 108.203 (7)°
  • β = 99.704 (9)°
  • γ = 97.910 (8)°
  • V = 669.5 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 295 (2) K
  • 0.42 × 0.36 × 0.32 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: none
  • 7084 measured reflections
  • 2324 independent reflections
  • 1799 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.090
  • S = 1.07
  • 2324 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680801307X/hb2727sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801307X/hb2727Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the Natural Science Foundation of Zhejiang Province of China (No. M203027).

supplementary crystallographic information

Comment

Hydrazone and its derivatives have shown the potential application in biological field (Okabe et al., 1993). As part of our ongoing investigation on anti-cancer compounds (Hu et al., 2001), the title compound, (I), has been prepared in our laboratory and its crystal structure is presented here.

The N1—C5 distance indicates a typical C=N double bond. The furan and dithiocarbazate moieties are located on the opposite positions of the C=N bond, thus the molecule assumes an E-configuration, which agrees with that found in methyl (β-N-phenylmethylene)dithiocarbazate (Shan et al., 2006).

In the molecule of (I), the furan ring is slightly twisted with respect to the dithiocarbazate plane with a dihedral angle of 7.58 (14)°, whereas the phenyl ring of the thioester group is nearly perpendicular to the dithiocarbazate plane with a dihedral angle of 85.51 (5)°. This is similar to that found in a related structure, benzyl 3-[(E)-phenylmethylene]dithiocarbazate (Shan et al., 2008).

In the crystal of (I), adjacent molecules are linked by intermolecular N—H···S hydrogen bonding into inversion dimers (Fig. 1 and Table 1).

Experimental

Benzyl dithiocarbazate was synthesized as described previously (Hu et al., 2001). Benzyl dithiocarbazate (1.98 g, 10 mmol) and furfural (0.96 g, 10 mmol) were dissolved in ethanol (40 ml) and the solution was refluxed for 12 h. A yellow crystalline product appeared after cooling to room temperature; it was separated and washed with cold water three times. Yellow prisms of (I) were obtained by recrystallization from an ethanol solution.

Refinement

The H atoms were placed in calculated positions with C—H = 0.97 (methylene), 0.93Å (aromatic) and N—H = 0.86 Å, and refined as riding with Uiso(H) = 1.2Ueq(C,N)

Figures

Fig. 1.
The inversion dimer in the crystal of (I) drawn with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding [symmetry code: (i) 2 - x,-y,1 - z].

Crystal data

C13H12N2OS2Z = 2
Mr = 276.37F000 = 288
Triclinic, P1Dx = 1.371 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 4.8331 (11) ÅCell parameters from 3836 reflections
b = 12.040 (3) Åθ = 1.8–25.0º
c = 12.549 (3) ŵ = 0.39 mm1
α = 108.203 (7)ºT = 295 (2) K
β = 99.704 (9)ºPrism, yellow
γ = 97.910 (8)º0.42 × 0.36 × 0.32 mm
V = 669.5 (3) Å3

Data collection

Rigaku R-AXIS RAPID IP diffractometer2324 independent reflections
Radiation source: fine-focus sealed tube1799 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
Detector resolution: 10.00 pixels mm-1θmax = 25.0º
T = 295(2) Kθmin = 1.8º
ω scansh = −5→5
Absorption correction: nonek = −14→13
7084 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.090  w = 1/[σ2(Fo2) + (0.0446P)2 + 0.0525P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2324 reflectionsΔρmax = 0.14 e Å3
163 parametersΔρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.03544 (13)−0.02756 (5)0.32307 (4)0.0669 (2)
S20.84716 (12)0.18647 (4)0.27822 (4)0.06143 (19)
O10.4143 (3)0.41877 (12)0.56065 (11)0.0662 (4)
N10.6602 (3)0.22213 (13)0.48240 (13)0.0533 (4)
N20.7837 (3)0.12309 (13)0.45371 (13)0.0569 (4)
H2N0.79430.08070.49760.068*
C10.4147 (4)0.33502 (16)0.61307 (15)0.0527 (5)
C20.2854 (5)0.36601 (19)0.70185 (17)0.0640 (5)
H20.25920.32420.75160.077*
C30.1967 (5)0.47383 (19)0.70534 (19)0.0711 (6)
H30.10110.51680.75740.085*
C40.2776 (5)0.50159 (19)0.61914 (19)0.0720 (6)
H40.24520.56870.60110.086*
C50.5457 (4)0.23599 (17)0.56929 (16)0.0548 (5)
H50.54790.17930.60540.066*
C60.8870 (4)0.09223 (16)0.35868 (15)0.0510 (5)
C71.0091 (5)0.11971 (19)0.15901 (17)0.0647 (5)
H7A1.21070.12290.18720.078*
H7B0.91450.03680.11890.078*
C80.9740 (4)0.19026 (17)0.07913 (16)0.0560 (5)
C90.7422 (5)0.1560 (2)−0.01297 (19)0.0764 (6)
H90.60640.0877−0.02580.092*
C100.7056 (7)0.2192 (3)−0.0861 (2)0.0916 (8)
H100.54690.1939−0.14760.110*
C110.9002 (8)0.3183 (3)−0.0689 (3)0.0931 (9)
H110.87500.3616−0.11820.112*
C121.1348 (7)0.3554 (2)0.0210 (3)0.0979 (9)
H121.26950.42350.03250.117*
C131.1712 (5)0.2906 (2)0.0954 (2)0.0795 (6)
H131.33060.31590.15650.095*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0906 (4)0.0557 (3)0.0675 (3)0.0399 (3)0.0222 (3)0.0265 (2)
S20.0790 (4)0.0596 (3)0.0632 (3)0.0369 (3)0.0240 (3)0.0313 (2)
O10.0945 (11)0.0586 (8)0.0640 (8)0.0373 (7)0.0296 (7)0.0313 (7)
N10.0610 (10)0.0490 (9)0.0560 (9)0.0254 (8)0.0127 (8)0.0206 (7)
N20.0722 (11)0.0519 (9)0.0595 (9)0.0302 (8)0.0188 (8)0.0275 (7)
C10.0573 (12)0.0517 (11)0.0549 (10)0.0174 (9)0.0118 (9)0.0244 (9)
C20.0741 (14)0.0667 (13)0.0656 (12)0.0244 (11)0.0285 (11)0.0316 (10)
C30.0787 (15)0.0672 (14)0.0736 (14)0.0314 (12)0.0303 (12)0.0187 (11)
C40.0920 (17)0.0575 (13)0.0773 (14)0.0389 (12)0.0243 (12)0.0253 (11)
C50.0623 (12)0.0526 (11)0.0585 (11)0.0213 (9)0.0138 (9)0.0275 (9)
C60.0525 (11)0.0483 (11)0.0547 (10)0.0173 (9)0.0079 (8)0.0201 (8)
C70.0737 (14)0.0654 (13)0.0702 (12)0.0341 (11)0.0265 (11)0.0303 (10)
C80.0629 (13)0.0559 (12)0.0600 (11)0.0263 (10)0.0251 (10)0.0229 (9)
C90.0843 (17)0.0717 (15)0.0764 (14)0.0172 (12)0.0151 (13)0.0309 (12)
C100.117 (2)0.100 (2)0.0697 (15)0.0416 (18)0.0182 (14)0.0385 (15)
C110.132 (3)0.103 (2)0.0922 (19)0.065 (2)0.0647 (19)0.0602 (17)
C120.103 (2)0.0752 (17)0.142 (3)0.0230 (16)0.062 (2)0.0551 (18)
C130.0761 (16)0.0753 (16)0.0940 (16)0.0195 (13)0.0238 (13)0.0346 (13)

Geometric parameters (Å, °)

S1—C61.6686 (18)C5—H50.9300
S2—C61.7477 (19)C7—C81.507 (3)
S2—C71.820 (2)C7—H7A0.9700
O1—C41.363 (2)C7—H7B0.9700
O1—C11.365 (2)C8—C131.369 (3)
N1—C51.280 (2)C8—C91.378 (3)
N1—N21.381 (2)C9—C101.369 (3)
N2—C61.336 (2)C9—H90.9300
N2—H2N0.8600C10—C111.348 (4)
C1—C21.345 (3)C10—H100.9300
C1—C51.428 (3)C11—C121.368 (4)
C2—C31.412 (3)C11—H110.9300
C2—H20.9300C12—C131.395 (4)
C3—C41.329 (3)C12—H120.9300
C3—H30.9300C13—H130.9300
C4—H40.9300
C6—S2—C7102.07 (9)C8—C7—S2107.15 (13)
C4—O1—C1106.12 (15)C8—C7—H7A110.3
C5—N1—N2114.92 (16)S2—C7—H7A110.3
C6—N2—N1120.90 (15)C8—C7—H7B110.3
C6—N2—H2N119.6S2—C7—H7B110.3
N1—N2—H2N119.6H7A—C7—H7B108.5
C2—C1—O1109.46 (17)C13—C8—C9117.6 (2)
C2—C1—C5131.99 (18)C13—C8—C7121.2 (2)
O1—C1—C5118.55 (16)C9—C8—C7121.1 (2)
C1—C2—C3107.23 (19)C10—C9—C8122.0 (2)
C1—C2—H2126.4C10—C9—H9119.0
C3—C2—H2126.4C8—C9—H9119.0
C4—C3—C2106.14 (18)C11—C10—C9119.8 (3)
C4—C3—H3126.9C11—C10—H10120.1
C2—C3—H3126.9C9—C10—H10120.1
C3—C4—O1111.05 (19)C10—C11—C12120.3 (3)
C3—C4—H4124.5C10—C11—H11119.9
O1—C4—H4124.5C12—C11—H11119.9
N1—C5—C1122.66 (18)C11—C12—C13119.7 (3)
N1—C5—H5118.7C11—C12—H12120.1
C1—C5—H5118.7C13—C12—H12120.1
N2—C6—S1121.22 (14)C8—C13—C12120.5 (2)
N2—C6—S2114.01 (13)C8—C13—H13119.7
S1—C6—S2124.76 (11)C12—C13—H13119.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2N···S1i0.862.563.3761 (19)158

Symmetry codes: (i) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2727).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ.22, 2014–2017.
  • Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1014. [PMC free article] [PubMed]
  • Shan, S., Zhang, Y.-L. & Xu, D.-J. (2006). Acta Cryst. E62, o1567–o1569.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography