PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1173.
Published online 2008 May 30. doi:  10.1107/S1600536808015092
PMCID: PMC2961400

4,4′-(2,6-Dihydroxy­naphthalene-1,5-diyldimethyl­ene)dipyridinium bis­(per­chlorate)

Abstract

The title compound, C22H20N2O2 2+·2ClO4 , was synthesized by the reaction of naphthalene-2,6-diol with pyridine-4-carbaldehyde, 4-picolylamine and perchloric acid. There is a centre of symmetry at the mid-point of the central C—C bond of the cation. The two pyridine rings are parallel to each other, and the dihedral angle between the naphthalene ring system and the pyridine ring is 80.68 (11)°. All the bond lengths and angles are normal. Classical inter­molecular O—H(...)O and N—H(...)O hydrogen bonds connect cations and anions, forming a one-dimensional chain structure.

Related literature

For related literature, see: Fu & Zhao (2007 [triangle]); Aoki et al. (2004 [triangle]); Jacobsson & Ellervik (2002 [triangle]); Sasada et al. (2003 [triangle]); Szatmári et al. (2003 [triangle]); Szatmári et al. (2004 [triangle]); Cardellicchio et al. (1999 [triangle]). For a comparison of bond lengths and angles, see: Oloo et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1173-scheme1.jpg

Experimental

Crystal data

  • C22H20N2O2 2+·2ClO4
  • M r = 543.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1173-efi1.jpg
  • a = 4.9587 (4) Å
  • b = 13.0399 (11) Å
  • c = 17.8291 (16) Å
  • β = 96.767 (2)°
  • V = 1144.82 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.35 mm−1
  • T = 296 (2) K
  • 0.30 × 0.20 × 0.05 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.925, T max = 0.988
  • 6156 measured reflections
  • 2011 independent reflections
  • 1610 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.151
  • S = 1.06
  • 2011 reflections
  • 168 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015092/wn2262sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015092/wn2262Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by a Start-up Grant from Southeast University to Dr Zhi-Rong Qu and by Jiangsu Education Department of China (No. 05KJB350031). The data collection was carried out by the School of Chemistry and Chemical Engineering, Nanjing University, P. R. China.

supplementary crystallographic information

Comment

Phenols and naphthols are an important class of compounds for the syntheses of dyes, pharmaceuticals and polymers. In particular, naphthalenediols are essential components of intelligent polymers such as engineering plastics and liquid crystalline polymers. 2,6-Naphthalenediol has attracted much attention for its chemical and physical properties as a liquid crystalline monomer material (Aoki et al., 2004; Jacobsson & Ellervik, 2002; Sasada et al., 2003). Electron-rich naphthols are also known to be good C-nucleophiles with the ability to undergo ready addition to C═N double bonds in modified Mannich condensations (Szatmári et al., 2003; Szatmári et al., 2004 and Cardellicchio et al.,1999). A similar 1,1'-binaphthyl derivative has been reported recently (Fu & Zhao, 2007).

The structure of the title compound is illustrated in Fig. 1. All the bond lengths and angles are normal (Oloo et al., 2002). The two pyridine rings are parallel to each other, and the dihedral angle between the naphthol ring system and the pyridine ring is 80.68 (11)°. The C3—C6—C7—C9 torsion angle is 82.8 (3)°. The packing diagram (Fig. 2) shows that three classical intermolecular O—H···O and N—H···O hydrogen-bonds (Table 1) link cations and anions to form a one-dimensional chain structure.

Experimental

Naphthalene-2,6-diol (1.60 g, 10 mmol), pyridine-4-carbaldehyde (1.07 g, 10 mmol), 4-picolylamine (1.08 g, 10 mmol) and perchloric acid (3 ml) were well mixed and heated to 120°C, cooled down and 25 ml ethanol was added after TLC showed that the reaction was complete. Well dispersed by ethanol, 1.50 g white powder was collected after filtration and finally recrystallized from ethanol, yielding the yellow title compound.

Refinement

H atoms bonded to O and N atoms were located in a difference map and refined with distance restraints of O—H = 0.82 and N—H = 0.86 Å, and with Uiso(H) = 1.5Ueq(O,N). Other H atoms were positioned geometrically and were allowed to ride on the C atoms to which they are bonded, with C—H = 0.93–0.97 Å; Uiso(H) = xUeq(C), where x= 1.5 for Csp2 and 1.2 for Csp3.

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code (A): -x, -y + 1, -z.
Fig. 2.
The packing of the structure, viewed down the a axis, showing molecules connected by O—H···O and N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been ...

Crystal data

C22H20N2O22+·2ClO4F000 = 560
Mr = 543.30Dx = 1.576 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3755 reflections
a = 4.9587 (4) Åθ = 2.8–25.0º
b = 13.0399 (11) ŵ = 0.35 mm1
c = 17.8291 (16) ÅT = 296 (2) K
β = 96.767 (2)ºTabular, yellow
V = 1144.82 (17) Å30.30 × 0.20 × 0.05 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer2011 independent reflections
Radiation source: fine-focus sealed tube1610 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 296(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.8º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −5→5
Tmin = 0.925, Tmax = 0.988k = −14→15
6156 measured reflectionsl = −21→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.151  w = 1/[σ2(Fo2) + (0.0742P)2 + 0.8634P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2011 reflectionsΔρmax = 0.46 e Å3
168 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.1573 (8)0.1073 (3)0.0739 (2)0.0616 (10)
H1A−0.23670.06540.03520.074*
C20.0188 (7)0.1821 (2)0.0583 (2)0.0529 (8)
H2A0.05890.19150.00920.063*
C30.1388 (6)0.2445 (2)0.11614 (17)0.0407 (7)
C40.0721 (7)0.2263 (3)0.18810 (19)0.0532 (8)
H4A0.14880.26620.22830.064*
C5−0.1058 (8)0.1501 (3)0.2003 (2)0.0630 (10)
H5A−0.14920.13780.24880.076*
C60.3317 (6)0.3289 (2)0.10067 (18)0.0456 (8)
H6A0.50710.29910.09470.055*
H6B0.35580.37460.14390.055*
C70.2348 (6)0.3905 (2)0.03090 (17)0.0412 (7)
C80.3277 (6)0.3667 (2)−0.03634 (19)0.0489 (8)
C90.0446 (6)0.4723 (2)0.03359 (17)0.0390 (7)
C10−0.0624 (6)0.4991 (2)0.10063 (17)0.0462 (8)
H10A−0.00820.46280.14470.055*
C11−0.2443 (7)0.5773 (3)0.10207 (19)0.0531 (8)
H11A−0.31330.59360.14690.080*
Cl10.28576 (17)0.89190 (6)0.17150 (5)0.0565 (3)
N1−0.2164 (6)0.0937 (2)0.1433 (2)0.0618 (8)
H1B−0.33050.04660.15180.093*
O10.5047 (5)0.2863 (2)−0.03716 (15)0.0732 (8)
H1C0.51860.2701−0.08100.110*
O20.3960 (6)0.79156 (19)0.18131 (15)0.0704 (8)
O30.3505 (7)0.9360 (2)0.10369 (15)0.0823 (9)
O40.4082 (10)0.9556 (3)0.22951 (18)0.1228 (15)
O50.0089 (7)0.8878 (3)0.1717 (4)0.177 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.072 (2)0.0445 (19)0.065 (2)0.0003 (17)−0.007 (2)−0.0014 (17)
C20.066 (2)0.0429 (18)0.0483 (19)0.0033 (15)−0.0006 (17)0.0020 (15)
C30.0432 (16)0.0336 (15)0.0431 (17)0.0128 (12)−0.0042 (13)0.0051 (13)
C40.063 (2)0.0491 (19)0.0459 (19)0.0051 (16)−0.0017 (16)−0.0011 (15)
C50.075 (3)0.058 (2)0.058 (2)0.0047 (19)0.015 (2)0.0109 (18)
C60.0447 (17)0.0406 (16)0.0491 (19)0.0056 (13)−0.0049 (14)0.0010 (14)
C70.0426 (16)0.0362 (15)0.0432 (17)0.0003 (13)−0.0020 (13)0.0031 (13)
C80.0473 (18)0.0421 (17)0.057 (2)0.0121 (14)0.0068 (15)0.0009 (15)
C90.0389 (15)0.0347 (15)0.0428 (17)0.0008 (12)0.0025 (13)0.0038 (12)
C100.0540 (18)0.0444 (17)0.0403 (17)0.0031 (14)0.0057 (15)0.0070 (14)
C110.061 (2)0.0542 (19)0.0453 (19)0.0124 (16)0.0133 (16)0.0009 (15)
Cl10.0550 (5)0.0464 (5)0.0695 (6)0.0110 (4)0.0128 (4)0.0129 (4)
N10.0591 (18)0.0398 (16)0.086 (2)0.0005 (13)0.0067 (17)0.0113 (16)
O10.0863 (18)0.0700 (17)0.0639 (16)0.0429 (14)0.0108 (14)0.0016 (13)
O20.0823 (18)0.0523 (15)0.0787 (18)0.0170 (13)0.0176 (14)0.0166 (13)
O30.114 (2)0.0672 (17)0.0640 (18)−0.0037 (16)0.0037 (16)0.0161 (14)
O40.225 (5)0.077 (2)0.064 (2)0.008 (3)0.010 (2)−0.0115 (17)
O50.059 (2)0.121 (3)0.360 (7)0.031 (2)0.062 (3)0.132 (4)

Geometric parameters (Å, °)

C1—N11.318 (5)C7—C91.429 (4)
C1—C21.359 (5)C8—O11.369 (4)
C1—H1A0.9300C8—C11i1.401 (5)
C2—C31.391 (4)C9—C101.408 (4)
C2—H2A0.9300C9—C9i1.424 (6)
C3—C41.383 (4)C10—C111.364 (4)
C3—C61.504 (4)C10—H10A0.9300
C4—C51.363 (5)C11—C8i1.401 (5)
C4—H4A0.9300C11—H11A0.9300
C5—N11.320 (5)Cl1—O51.374 (3)
C5—H5A0.9300Cl1—O41.407 (4)
C6—C71.511 (4)Cl1—O31.409 (3)
C6—H6A0.9700Cl1—O21.421 (3)
C6—H6B0.9700N1—H1B0.8600
C7—C81.370 (4)O1—H1C0.8200
N1—C1—C2120.5 (3)C9—C7—C6121.1 (3)
N1—C1—H1A119.7O1—C8—C7117.7 (3)
C2—C1—H1A119.7O1—C8—C11i121.1 (3)
C1—C2—C3119.9 (3)C7—C8—C11i121.2 (3)
C1—C2—H2A120.1C10—C9—C9i118.5 (3)
C3—C2—H2A120.1C10—C9—C7122.0 (3)
C4—C3—C2117.3 (3)C9i—C9—C7119.5 (3)
C4—C3—C6121.5 (3)C11—C10—C9121.2 (3)
C2—C3—C6121.2 (3)C11—C10—H10A119.4
C5—C4—C3120.2 (3)C9—C10—H10A119.4
C5—C4—H4A119.9C10—C11—C8i120.3 (3)
C3—C4—H4A119.9C10—C11—H11A119.8
N1—C5—C4120.1 (4)C8i—C11—H11A119.8
N1—C5—H5A119.9O5—Cl1—O4111.5 (3)
C4—C5—H5A119.9O5—Cl1—O3110.3 (3)
C3—C6—C7113.1 (2)O4—Cl1—O3105.5 (2)
C3—C6—H6A109.0O5—Cl1—O2109.5 (2)
C7—C6—H6A109.0O4—Cl1—O2109.1 (2)
C3—C6—H6B109.0O3—Cl1—O2110.97 (17)
C7—C6—H6B109.0C1—N1—C5122.0 (3)
H6A—C6—H6B107.8C1—N1—H1B119.0
C8—C7—C9119.3 (3)C5—N1—H1B119.0
C8—C7—C6119.6 (3)C8—O1—H1C109.5
N1—C1—C2—C30.3 (5)C9—C7—C8—C11i1.5 (5)
C1—C2—C3—C40.4 (4)C6—C7—C8—C11i−179.4 (3)
C1—C2—C3—C6−179.2 (3)C8—C7—C9—C10178.7 (3)
C2—C3—C4—C5−0.3 (5)C6—C7—C9—C10−0.4 (4)
C6—C3—C4—C5179.2 (3)C8—C7—C9—C9i−0.1 (5)
C3—C4—C5—N1−0.4 (5)C6—C7—C9—C9i−179.2 (3)
C4—C3—C6—C7−135.8 (3)C9i—C9—C10—C11−1.1 (5)
C2—C3—C6—C743.7 (4)C7—C9—C10—C11−179.9 (3)
C3—C6—C7—C8−96.3 (3)C9—C10—C11—C8i−0.3 (5)
C3—C6—C7—C982.8 (3)C2—C1—N1—C5−1.1 (5)
C9—C7—C8—O1−178.5 (3)C4—C5—N1—C11.1 (5)
C6—C7—C8—O10.6 (5)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1C···O2ii0.822.052.859 (4)169
N1—H1B···O3iii0.862.242.997 (4)148
N1—H1B···O4iii0.862.333.121 (5)153

Symmetry codes: (ii) −x+1, −y+1, −z; (iii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2262).

References

  • Aoki, Y., Sakaguchi, S. & Ishii, Y. (2004). Adv. Synth. Catal.346, 199–202.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cardellicchio, C., Ciccarella, G., Naso, F., Perna, F. & Tortorella, P. (1999). Tetrahedron, 55, 14685–14692.
  • Fu, D.-W. & Zhao, H. (2007). Acta Cryst E63, o3206.
  • Jacobsson, M. & Ellervik, U. (2002). Tetrahedron Lett.43, 6549–6552.
  • Oloo, E. O., Quail, J. W., Padmanilayam, M. P. & Dimmock, J. R. (2002). Acta Cryst. E58, o689–o690.
  • Sasada, Y., Shibasaki, Y., Suzuki, M. & Ueda, M. (2003). Polymer44, 355-360.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Szatmári, I., Martinek, T. A., Lázár, L. & Fülöp, F. (2003). Tetrahedron, 59, 2877–2884.
  • Szatmári, I., Martinek, T. A., Lázár, L., Koch, A., Kleinpeter, E., Neuvonen, K. & Fülöp, F. (2004). J. Org. Chem 69, 3645–3653. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography