PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1148.
Published online 2008 May 24. doi:  10.1107/S1600536808015079
PMCID: PMC2961399

4-(4-Cyano­benzoyl­meth­yl)benzonitrile

Abstract

In the title compound, C16H10N2O, the dihedral angle formed by the benzene rings is 84.99 (7)°. The crystal structure is stabilized by inter­molecular C—H(...)N and C—H(...)O hydrogen-bond inter­actions, forming chains running parallel to the b axis.

Related literature

For related literature, see: Arıcı et al. (2004 [triangle]); Radl et al. (2000 [triangle]); Bernstein et al. (1995 [triangle]); Zhao (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1148-scheme1.jpg

Experimental

Crystal data

  • C16H10N2O
  • M r = 246.26
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1148-efi1.jpg
  • a = 7.5217 (15) Å
  • b = 7.9759 (16) Å
  • c = 10.881 (2) Å
  • α = 96.78 (3)°
  • β = 93.34 (3)°
  • γ = 102.10 (3)°
  • V = 631.5 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.20 × 0.20 × 0.16 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.964, T max = 0.988
  • 6576 measured reflections
  • 2898 independent reflections
  • 1943 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.157
  • S = 1.04
  • 2898 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015079/rz2215sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015079/rz2215Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

Benzonitriles and their derivatives are important starting materials in the synthesis of some heterocyclic molecules (Radl et al., 2000; Arıcı et al., 2004). As part of our ongoing study on benzonitrile derivatives (Zhao, 2008), the crystal structure of one such derivatives is reported here.

The molecular structure of the title compound (Fig. 1) shows normal bond lengths and angles. The C[equivalent]N triple bond and C=O double bond lengths are 1.142 (2) and and 1.193 (2) Å, respectively. The benzene ring are oriented nearly perpendicular to each other, the dihedral angle they form being 84.99 (7)°. In the crystal structure, centrosymmetrically-related molecules are linked into dimeric units by intermolecular C—H···N hydrogen bonds (Table 1) forming ten-membered rings of graph-set R22(10) (Berstein et al., 1995). These dimers are further connected by intermolecular C—H···O hydrogen interactions to form chains running parallel to the b axis.

Experimental

To a solution of sodium cyanide (2 g) in water (18 ml) was added 4-formylbenzonitrile (2.62 g). The mixture was stirred for 15 min at room temperature, then a saturated sodium hydrosulfite solution (15 ml) was added dropwise. The resulting mixture was stirred at 293K until a yellow solid was obtained. The solid was filtered and recrystallized from a mixture of methanol (18 ml) and DMF (6 ml), to give crystals of the title compound suitable for X-ray diffraction analysis on slow evaporation of the solvents.

Refinement

All hydrogen atoms were placed at calculated positions and refined using the riding model approximation, with C—H = 0.93-0.97 Å and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level

Crystal data

C16H10N2OZ = 2
Mr = 246.26F000 = 256
Triclinic, P1Dx = 1.295 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.5217 (15) ÅCell parameters from 2232 reflections
b = 7.9759 (16) Åθ = 3.0–27.4º
c = 10.881 (2) ŵ = 0.08 mm1
α = 96.78 (3)ºT = 293 (2) K
β = 93.34 (3)ºBlock, yellow
γ = 102.10 (3)º0.20 × 0.20 × 0.16 mm
V = 631.5 (2) Å3

Data collection

Rigaku Mercury2 diffractometer2898 independent reflections
Radiation source: fine-focus sealed tube1943 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
Detector resolution: 13.6612 pixels mm-1θmax = 27.5º
T = 293(2) Kθmin = 3.0º
CCD_Profile_fitting scansh = −9→9
Absorption correction: Multi-scan(CrystalClear; Rigaku/MSC, 2005)k = −10→10
Tmin = 0.964, Tmax = 0.988l = −14→14
6576 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059  w = 1/[σ2(Fo2) + (0.0717P)2 + 0.1009P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.157(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.25 e Å3
2898 reflectionsΔρmin = −0.21 e Å3
173 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.168 (18)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.1774 (2)0.4661 (2)0.18751 (15)0.0468 (4)
C20.0347 (3)0.5506 (2)0.18255 (17)0.0546 (5)
H2−0.07150.50810.21890.066*
C30.0475 (3)0.6970 (2)0.12455 (17)0.0532 (5)
H3−0.04930.75280.12180.064*
C40.2055 (2)0.7599 (2)0.07065 (15)0.0468 (4)
C50.3487 (3)0.6762 (2)0.07410 (17)0.0550 (5)
H50.45450.71810.03710.066*
C60.3339 (3)0.5301 (2)0.13273 (17)0.0550 (5)
H60.43060.47420.13530.066*
C70.2217 (3)0.9131 (2)0.00999 (17)0.0558 (5)
C80.2389 (2)0.2017 (2)0.46012 (15)0.0457 (4)
C90.2979 (3)0.2430 (2)0.58529 (16)0.0580 (5)
H90.31780.35710.62260.070*
C100.3274 (3)0.1162 (2)0.65476 (17)0.0599 (5)
H100.36680.14470.73870.072*
C110.2980 (2)−0.0536 (2)0.59929 (16)0.0476 (4)
C120.2369 (2)−0.0974 (2)0.47534 (17)0.0521 (5)
H120.2158−0.21180.43840.062*
C130.2074 (3)0.0309 (2)0.40669 (16)0.0508 (5)
H130.16560.00180.32320.061*
C140.3367 (3)−0.1839 (2)0.67244 (18)0.0560 (5)
C150.2138 (3)0.3455 (2)0.38867 (17)0.0589 (5)
N10.2355 (3)1.0349 (2)−0.03745 (18)0.0757 (5)
N20.3690 (3)−0.2834 (2)0.73238 (17)0.0742 (6)
O10.2335 (4)0.48933 (19)0.44054 (14)0.1312 (10)
C160.1648 (3)0.3057 (2)0.25106 (16)0.0529 (5)
H16A0.04130.23650.23580.063*
H16B0.24580.23740.21470.063*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0585 (11)0.0387 (8)0.0433 (9)0.0106 (8)−0.0022 (8)0.0092 (7)
C20.0563 (11)0.0512 (10)0.0595 (11)0.0119 (9)0.0080 (9)0.0189 (9)
C30.0581 (11)0.0491 (10)0.0585 (11)0.0204 (8)0.0042 (9)0.0166 (8)
C40.0600 (11)0.0400 (8)0.0405 (8)0.0105 (8)−0.0016 (8)0.0090 (7)
C50.0575 (11)0.0531 (10)0.0572 (11)0.0126 (9)0.0064 (9)0.0171 (9)
C60.0573 (11)0.0531 (10)0.0592 (11)0.0196 (9)0.0014 (9)0.0142 (9)
C70.0694 (13)0.0504 (10)0.0516 (10)0.0168 (9)0.0060 (9)0.0153 (8)
C80.0579 (10)0.0367 (8)0.0456 (9)0.0140 (7)0.0060 (8)0.0104 (7)
C90.0864 (14)0.0370 (9)0.0500 (10)0.0134 (9)0.0019 (10)0.0055 (8)
C100.0798 (14)0.0507 (10)0.0478 (10)0.0099 (10)−0.0036 (9)0.0133 (8)
C110.0474 (9)0.0431 (9)0.0569 (10)0.0109 (7)0.0092 (8)0.0212 (8)
C120.0656 (12)0.0330 (8)0.0596 (11)0.0121 (8)0.0076 (9)0.0106 (8)
C130.0668 (11)0.0378 (9)0.0486 (10)0.0132 (8)0.0022 (8)0.0073 (7)
C140.0566 (11)0.0512 (10)0.0661 (12)0.0144 (9)0.0103 (9)0.0243 (9)
C150.0930 (15)0.0367 (9)0.0514 (10)0.0225 (9)0.0028 (10)0.0108 (8)
N10.0880 (13)0.0672 (11)0.0853 (13)0.0269 (10)0.0212 (10)0.0399 (10)
N20.0837 (13)0.0672 (11)0.0843 (13)0.0263 (10)0.0116 (10)0.0410 (10)
O10.296 (3)0.0429 (8)0.0603 (10)0.0630 (13)−0.0189 (13)0.0018 (7)
C160.0680 (12)0.0387 (9)0.0527 (10)0.0126 (8)−0.0010 (9)0.0108 (8)

Geometric parameters (Å, °)

C1—C61.380 (3)C8—C151.496 (2)
C1—C21.383 (2)C9—C101.377 (2)
C1—C161.513 (2)C9—H90.9300
C2—C31.381 (2)C10—C111.384 (3)
C2—H20.9300C10—H100.9300
C3—C41.381 (3)C11—C121.379 (2)
C3—H30.9300C11—C141.446 (2)
C4—C51.382 (3)C12—C131.382 (2)
C4—C71.442 (2)C12—H120.9300
C5—C61.381 (2)C13—H130.9300
C5—H50.9300C14—N21.140 (2)
C6—H60.9300C15—O11.193 (2)
C7—N11.142 (2)C15—C161.501 (3)
C8—C131.383 (2)C16—H16A0.9700
C8—C91.387 (2)C16—H16B0.9700
C6—C1—C2118.89 (15)C8—C9—H9119.7
C6—C1—C16119.65 (16)C9—C10—C11119.80 (17)
C2—C1—C16121.46 (16)C9—C10—H10120.1
C3—C2—C1121.07 (17)C11—C10—H10120.1
C3—C2—H2119.5C12—C11—C10120.45 (15)
C1—C2—H2119.5C12—C11—C14120.50 (16)
C2—C3—C4119.32 (17)C10—C11—C14119.03 (17)
C2—C3—H3120.3C11—C12—C13119.21 (16)
C4—C3—H3120.3C11—C12—H12120.4
C3—C4—C5120.28 (15)C13—C12—H12120.4
C3—C4—C7120.13 (16)C12—C13—C8121.10 (17)
C5—C4—C7119.59 (16)C12—C13—H13119.5
C6—C5—C4119.70 (17)C8—C13—H13119.5
C6—C5—H5120.2N2—C14—C11178.3 (2)
C4—C5—H5120.2O1—C15—C8120.30 (17)
C1—C6—C5120.74 (17)O1—C15—C16120.78 (16)
C1—C6—H6119.6C8—C15—C16118.92 (15)
C5—C6—H6119.6C15—C16—C1113.15 (14)
N1—C7—C4179.5 (2)C15—C16—H16A108.9
C13—C8—C9118.91 (15)C1—C16—H16A108.9
C13—C8—C15122.97 (16)C15—C16—H16B108.9
C9—C8—C15118.12 (15)C1—C16—H16B108.9
C10—C9—C8120.52 (16)H16A—C16—H16B107.8
C10—C9—H9119.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.932.623.486 (3)154
C12—H12···O1ii0.932.423.268 (2)152

Symmetry codes: (i) −x, −y+2, −z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2215).

References

  • Arıcı, C., Ülkü, D., Kırılmış, C., Koca, M. & Ahmedzade, M. (2004). Acta Cryst. E60, o1211–o1212.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl 34, 1555–1573.
  • Radl, S., Hezky, P., Konvicka, P. & Krejgi, J. (2000). Collect. Czech. Chem. Commun.65, 1093–1108.
  • Rigaku/MSC (2005). CrystalClear and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhao, Y.-Y. (2008). Acta Cryst. E64, o761. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography