PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m802.
Published online 2008 May 10. doi:  10.1107/S1600536808013329
PMCID: PMC2961398

Hexaaqua­hexa­kis(μ2-3,5-diamino-4H-1,2,4-triazole)trinickel(II) tris­(hexa­fluoridosilicate) icosa­hydrate

Abstract

The trinuclear cation of the title compound, [Ni3(C2H5N5)6(H2O)6][SiF6]3·20H2O, has the six 3,5-diamino-1,2,4-triazole ligands each bridging two metal atoms; the metal atom in the middle, which lies on a special position (of 32 site symmetry), is connected to six N atoms in an octa­hedral geometry. The other metal atom, which lies on a special position (of 3 site symmetry), is connected to three N atoms and three O atoms. One hexa­fluroridosilicate anion lies on a site of 3 symmetry and the other lies on a site of An external file that holds a picture, illustration, etc.
Object name is e-64-0m802-efi1.jpg symmetry. The hexa­cation, dianions and uncoordinated water mol­ecules inter­act through hydrogen bonds to form a three-dimensional network. One uncoordinated water molecule is disordered, with site occupancy 0.3.

Related literature

For the structure of the title hexa­cation as the hydrated sulfate salt, see: Zhang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m802-scheme1.jpg

Experimental

Crystal data

  • [Ni3(C2H5N5)6(H2O)6][SiF6]3·20H2O
  • M r = 1665.48
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-64-0m802-efi2.jpg
  • a = 13.024 (1) Å
  • c = 64.462 (5) Å
  • V = 9469.8 (9) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 1.09 mm−1
  • T = 293 (2) K
  • 0.49 × 0.46 × 0.44 mm

Data collection

  • Bruker APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.560, T max = 0.646
  • 25347 measured reflections
  • 2420 independent reflections
  • 2093 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.106
  • S = 1.06
  • 2420 reflections
  • 185 parameters
  • 23 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013329/si2084sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013329/si2084Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Shaanxi Normal University and the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

A recent study reported the nickel sulfate complex of 3,5-diamino-1,2,4-triazole. The cation is a centrosymmetric trinuclear hexacation [Ni3(C2H5N5)6(H2O)6]6+, whose charge is balanced by the sulfate anions. The N-heterocyclic ligands each bridge two nickel atoms (Zhang et al., 2007). The corresponding synthesis with nickel hexafluoridosilicate in place of nickel sulfate gave the analogous cluster cation (Scheme I, Fig. 1). The cation and anions interact through the coordinated and free water molecules to give rise to a three-dimensional, hydrogen bonded network.

Experimental

Single crystal of the compound were grown by diffusing 3,5-diamino-1,2,4-triazole (0.020 g, 0.2 mmol) dissolved in methanol (5 ml) into nickle(II) hexafluorosilicate (0.027 g, 0.1 mmol) dissolved in water (5 ml).

Refinement

As one of the five water molecules (O5) lies on a special position of 2 site symmetry, the occupancy would be 0.5. However, the refinement of this atom at the default occupancy lead to a large temperature factor. The refinement of the occupancy factor led to a value of about 0.3; this atom was then allowed to refine off the symmetry element. As the occupancy was nearly 0.3, the occupancy was arbitrarily fixed as 0.3333 so that the formula unit has 20 lattice water molecules.

The N– and O–bound H atoms (other than those of the diordered water molecule) were found in difference maps and were refined with distance restraints of O–H = N–H = O.85±0.01 Å; for the water molecules, an additional H···H = 1.39±0.01 Å restraint was imposed. The Uiso(H) values were tied to those of the parent atoms by a factor of 1.5. The H atoms of the disordered water molecule were placed in chemically sensible positions but were not refined.

Figures

Fig. 1.
Thermal ellipsoid plot of the title compound. Displacement ellipsoids are drawn at the 25% probability level.

Crystal data

[Ni3(C2H5N5)6(H2O)6][SiF6]3·20H2OZ = 6
Mr = 1665.48F000 = 5160
Trigonal, R3cDx = 1.752 Mg m3
Hall symbol: -R 3 2"cMo Kα radiation λ = 0.71073 Å
a = 13.024 (1) ÅCell parameters from 5839 reflections
b = 13.024 Åθ = 3.1–28.2º
c = 64.462 (5) ŵ = 1.09 mm1
α = 90ºT = 293 (2) K
β = 90ºBlock, blue
γ = 120º0.49 × 0.46 × 0.44 mm
V = 9469.8 (9) Å3

Data collection

Bruker APEX area-detector diffractometer2420 independent reflections
Radiation source: fine-focus sealed tube2093 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
T = 293(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 3.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −16→16
Tmin = 0.560, Tmax = 0.646k = −16→16
25347 measured reflectionsl = −79→83

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106  w = 1/[σ2(Fo2) + (0.0612P)2 + 17.0807P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2420 reflectionsΔρmax = 0.40 e Å3
185 parametersΔρmin = −0.42 e Å3
23 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ni10.66670.33330.140787 (6)0.02689 (14)
Ni20.66670.33330.08330.02377 (16)
Si11.00000.00000.083802 (16)0.0331 (2)
Si20.3333−0.33330.16670.0552 (5)
F10.89685 (14)0.00226 (15)0.09960 (2)0.0623 (4)
F21.00168 (16)0.10635 (14)0.06943 (3)0.0648 (4)
F30.3983 (3)−0.3868 (3)0.15169 (5)0.1399 (12)
O10.72286 (15)0.24063 (14)0.16010 (2)0.0398 (3)
H110.723 (3)0.1843 (18)0.1533 (3)0.060*
H120.699 (3)0.217 (2)0.1724 (2)0.060*
O20.7536 (2)0.0854 (2)0.13625 (4)0.0660 (5)
H210.713 (2)0.0108 (10)0.1358 (6)0.099*
H220.8267 (10)0.108 (3)0.1361 (7)0.099*
O30.65459 (19)0.15616 (17)0.19955 (3)0.0599 (5)
H310.5874 (17)0.094 (2)0.1978 (5)0.090*
H320.650 (3)0.197 (2)0.2092 (4)0.090*
O40.6041 (2)−0.1661 (3)0.12859 (4)0.0796 (6)
H410.576 (3)−0.184 (4)0.1164 (3)0.119*
H420.551 (3)−0.182 (4)0.1374 (4)0.119*
O50.664 (3)−0.1549 (17)0.0893 (3)0.185 (7)0.3333
H510.7382−0.10720.09050.278*0.3333
H520.6338−0.12390.08160.278*0.3333
N10.61588 (14)0.43372 (14)0.12352 (2)0.0290 (3)
N20.59282 (14)0.41343 (14)0.10195 (2)0.0293 (3)
N30.52872 (17)0.53100 (17)0.11289 (3)0.0381 (4)
H30.500 (2)0.576 (2)0.1117 (4)0.057*
N40.5100 (2)0.4865 (2)0.07683 (3)0.0508 (5)
H4A0.514 (3)0.449 (3)0.0663 (4)0.076*
H4B0.468 (2)0.517 (3)0.0744 (6)0.076*
N50.5810 (2)0.5478 (2)0.14862 (3)0.0556 (6)
H5A0.625 (3)0.540 (3)0.1574 (4)0.083*
H5B0.535 (3)0.575 (3)0.1509 (5)0.083*
C10.57611 (18)0.50413 (18)0.12943 (3)0.0343 (4)
C20.54160 (17)0.47436 (17)0.09630 (3)0.0336 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.02997 (17)0.02997 (17)0.0207 (2)0.01499 (9)0.0000.000
Ni20.0253 (2)0.0253 (2)0.0207 (3)0.01265 (10)0.0000.000
Si10.0300 (3)0.0300 (3)0.0394 (5)0.01500 (15)0.0000.000
Si20.0333 (5)0.0333 (5)0.0992 (15)0.0166 (2)0.0000.000
F10.0555 (9)0.0683 (10)0.0701 (10)0.0363 (8)0.0170 (7)0.0016 (8)
F20.0710 (10)0.0574 (9)0.0741 (10)0.0382 (8)−0.0004 (8)0.0199 (8)
F30.146 (3)0.176 (3)0.163 (3)0.129 (3)0.0160 (19)−0.025 (2)
O10.0497 (8)0.0454 (8)0.0292 (7)0.0274 (7)−0.0020 (6)0.0041 (6)
O20.0624 (12)0.0722 (13)0.0750 (13)0.0424 (11)−0.0019 (10)−0.0133 (11)
O30.0764 (13)0.0541 (11)0.0436 (9)0.0283 (10)0.0132 (9)−0.0001 (8)
O40.0709 (15)0.0812 (15)0.0871 (16)0.0383 (13)−0.0030 (12)−0.0025 (14)
O50.119 (7)0.216 (10)0.178 (13)0.051 (7)−0.015 (9)−0.010 (8)
N10.0349 (8)0.0329 (8)0.0226 (7)0.0194 (6)0.0006 (6)−0.0010 (6)
N20.0352 (8)0.0355 (8)0.0219 (7)0.0213 (7)−0.0009 (6)−0.0005 (6)
N30.0476 (10)0.0440 (10)0.0366 (9)0.0334 (8)−0.0010 (7)−0.0015 (7)
N40.0743 (15)0.0720 (14)0.0343 (10)0.0578 (13)−0.0109 (9)−0.0043 (9)
N50.0821 (16)0.0803 (15)0.0348 (10)0.0635 (14)−0.0071 (10)−0.0157 (10)
C10.0390 (10)0.0367 (10)0.0319 (9)0.0224 (9)0.0008 (8)−0.0023 (8)
C20.0377 (10)0.0374 (10)0.0312 (9)0.0229 (9)−0.0009 (7)0.0006 (7)

Geometric parameters (Å, °)

Ni1—N12.062 (2)Si2—F31.649 (3)
Ni1—N1i2.062 (2)O1—H110.86 (3)
Ni1—N1ii2.062 (2)O1—H120.85 (3)
Ni1—O12.104 (2)O2—H210.84 (3)
Ni1—O1i2.104 (2)O2—H220.84 (3)
Ni1—O1ii2.104 (2)O3—H310.85 (3)
Ni2—N2iii2.111 (2)O3—H320.84 (3)
Ni2—N2iv2.111 (2)O4—H410.85 (3)
Ni2—N2v2.111 (2)O4—H420.84 (3)
Ni2—N2ii2.111 (2)O5—H510.85
Ni2—N2i2.111 (2)O5—H520.85
Ni2—N22.111 (2)N1—C11.315 (2)
Si1—F21.6574 (15)N1—N21.419 (2)
Si1—F2vi1.6574 (15)N2—C21.318 (3)
Si1—F2vii1.6574 (15)N3—C21.356 (3)
Si1—F1vii1.6976 (15)N3—C11.362 (3)
Si1—F1vi1.6976 (15)N3—H30.85 (1)
Si1—F11.6976 (15)N4—C21.354 (3)
Si2—F3viii1.649 (3)N4—H4A0.85 (3)
Si2—F3ix1.649 (3)N4—H4B0.84 (3)
Si2—F3x1.649 (3)N5—C11.350 (3)
Si2—F3xi1.649 (3)N5—H5A0.84 (3)
Si2—F3xii1.649 (3)N5—H5B0.85 (3)
N1ii—Ni1—N1i93.61 (6)F1vi—Si1—F187.74 (9)
N1ii—Ni1—N193.61 (6)F3viii—Si2—F3ix89.21 (17)
N1i—Ni1—N193.61 (6)F3viii—Si2—F3x89.21 (17)
N1ii—Ni1—O187.31 (6)F3ix—Si2—F3x89.21 (17)
N1i—Ni1—O190.45 (6)F3viii—Si2—F3xi90.79 (17)
N1—Ni1—O1175.77 (6)F3ix—Si2—F3xi90.79 (17)
N1ii—Ni1—O1i90.45 (6)F3x—Si2—F3xi179.995 (1)
N1i—Ni1—O1i175.77 (6)F3viii—Si2—F3xii90.79 (17)
N1—Ni1—O1i87.31 (6)F3ix—Si2—F3xii179.995 (1)
O1—Ni1—O1i88.56 (6)F3x—Si2—F3xii90.79 (17)
N1ii—Ni1—O1ii175.78 (6)F3xi—Si2—F3xii89.21 (17)
N1i—Ni1—O1ii87.31 (6)F3viii—Si2—F3179.997 (1)
N1—Ni1—O1ii90.45 (6)F3ix—Si2—F390.79 (17)
O1—Ni1—O1ii88.56 (6)F3x—Si2—F390.79 (17)
O1i—Ni1—O1ii88.56 (6)F3xi—Si2—F389.21 (17)
N2iii—Ni2—N2iv90.87 (6)F3xii—Si2—F389.21 (17)
N2iii—Ni2—N2v90.87 (6)Ni1—O1—H11110 (2)
N2iv—Ni2—N2v90.87 (6)Ni1—O1—H12126 (2)
N2iii—Ni2—N2ii87.57 (8)H11—O1—H12109 (2)
N2iv—Ni2—N2ii177.79 (8)H21—O2—H22111 (2)
N2v—Ni2—N2ii90.72 (8)H31—O3—H32110 (2)
N2iii—Ni2—N2i90.72 (8)H41—O4—H42111 (2)
N2iv—Ni2—N2i87.57 (8)H51—O5—H52109.4
N2v—Ni2—N2i177.79 (8)C1—N1—N2107.04 (15)
N2ii—Ni2—N2i90.88 (6)C1—N1—Ni1130.48 (12)
N2iii—Ni2—N2177.79 (8)N2—N1—Ni1121.05 (11)
N2iv—Ni2—N290.72 (8)C2—N2—N1106.38 (15)
N2v—Ni2—N287.57 (8)C2—N2—Ni2129.31 (13)
N2ii—Ni2—N290.88 (6)N1—N2—Ni2122.87 (12)
N2i—Ni2—N290.88 (6)C2—N3—C1106.38 (16)
F2—Si1—F2vi91.80 (9)C2—N3—H3122 (2)
F2—Si1—F2vii91.80 (9)C1—N3—H3132 (2)
F2vi—Si1—F2vii91.80 (9)C2—N4—H4A125 (2)
F2—Si1—F1vii90.36 (8)C2—N4—H4B122 (3)
F2vi—Si1—F1vii177.12 (10)H4A—N4—H4B111 (3)
F2vii—Si1—F1vii90.03 (8)C1—N5—H5A117 (2)
F2—Si1—F1vi177.12 (10)C1—N5—H5B116 (2)
F2vi—Si1—F1vi90.03 (8)H5A—N5—H5B126 (3)
F2vii—Si1—F1vi90.36 (8)N1—C1—N5127.37 (19)
F1vii—Si1—F1vi87.74 (9)N1—C1—N3109.86 (16)
F2—Si1—F190.03 (8)N5—C1—N3122.76 (18)
F2vi—Si1—F190.36 (8)N2—C2—N4126.92 (19)
F2vii—Si1—F1177.12 (10)N2—C2—N3110.33 (17)
F1vii—Si1—F187.74 (9)N4—C2—N3122.67 (19)
N1ii—Ni1—N1—C1−135.1 (2)N2iv—Ni2—N2—N1146.76 (16)
N1i—Ni1—N1—C1131.1 (2)N2v—Ni2—N2—N1−122.40 (15)
O1i—Ni1—N1—C1−44.81 (19)N2ii—Ni2—N2—N1−31.71 (12)
O1ii—Ni1—N1—C143.72 (19)N2i—Ni2—N2—N159.18 (10)
N1ii—Ni1—N1—N260.39 (10)N2—N1—C1—N5−179.0 (2)
N1i—Ni1—N1—N2−33.46 (12)Ni1—N1—C1—N514.9 (3)
O1i—Ni1—N1—N2150.67 (13)N2—N1—C1—N3−0.1 (2)
O1ii—Ni1—N1—N2−120.79 (13)Ni1—N1—C1—N3−166.30 (14)
C1—N1—N2—C20.6 (2)C2—N3—C1—N1−0.4 (2)
Ni1—N1—N2—C2168.37 (13)C2—N3—C1—N5178.5 (2)
C1—N1—N2—Ni2168.09 (13)N1—N2—C2—N4176.0 (2)
Ni1—N1—N2—Ni2−24.17 (18)Ni2—N2—C2—N49.6 (3)
N2iv—Ni2—N2—C2−48.86 (15)N1—N2—C2—N3−0.9 (2)
N2v—Ni2—N2—C241.98 (14)Ni2—N2—C2—N3−167.25 (14)
N2ii—Ni2—N2—C2132.67 (18)C1—N3—C2—N20.8 (2)
N2i—Ni2—N2—C2−136.44 (18)C1—N3—C2—N4−176.2 (2)

Symmetry codes: (i) −y+1, xy, z; (ii) −x+y+1, −x+1, z; (iii) y+1/3, x−1/3, −z+1/6; (iv) xy+1/3, −y+2/3, −z+1/6; (v) −x+4/3, −x+y+2/3, −z+1/6; (vi) −y+1, xy−1, z; (vii) −x+y+2, −x+1, z; (viii) −x+2/3, −y−2/3, −z+1/3; (ix) xy−1/3, x−2/3, −z+1/3; (x) y+2/3, −x+y+1/3, −z+1/3; (xi) −y, xy−1, z; (xii) −x+y+1, −x, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H11···O20.86 (3)1.88 (3)2.724 (3)168 (3)
O1—H12···O30.85 (3)1.89 (3)2.737 (2)174 (3)
O2—H21···O40.84 (3)2.07 (3)2.896 (4)168 (4)
O2—H22···O3xiii0.84 (3)2.12 (3)2.961 (3)175 (4)
O3—H31···O4ix0.85 (3)2.05 (3)2.861 (3)159 (3)
O3—H32···F1ix0.84 (3)2.13 (3)2.904 (2)153 (3)
O4—H41···F2xiv0.85 (3)2.23 (3)2.950 (3)143 (4)
O4—H42···F3xi0.84 (3)2.16 (3)2.973 (4)162 (4)
O4—H41···O50.85 (3)2.03 (3)2.64 (2)128 (4)
O5—H51···F10.851.922.76 (3)167
N3—H3···F2iii0.85 (3)1.97 (3)2.764 (2)157 (3)
N4—H4b···F1iii0.84 (3)2.14 (3)2.974 (3)170 (3)
N5—H5a···O1i0.84 (3)2.23 (3)2.942 (3)142 (3)
N5—H5b···F3xv0.85 (3)2.08 (3)2.909 (3)167 (3)

Symmetry codes: (xiii) −x+5/3, −y+1/3, −z+1/3; (ix) xy−1/3, x−2/3, −z+1/3; (xiv) y+1/3, x−4/3, −z+1/6; (xi) −y, xy−1, z; (iii) y+1/3, x−1/3, −z+1/6; (i) −y+1, xy, z; (xv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2084).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2004). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.
  • Zhang, G.-F., Zhao, S.-M., She, J.-B. & Ng, S. W. (2007). Acta Cryst. E63, m1517–m1518.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography