PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m787.
Published online 2008 May 10. doi:  10.1107/S1600536808012968
PMCID: PMC2961391

Bis{2-[2-(1H-indol-3-yl)ethyl­imino­meth­yl]phenolato-κ2 N,O}nickel(II) N,N-dimethyl­formamide disolvate

Abstract

The Ni atom in the title compound, [Ni(C17H15N2O)2]·2C3H7NO, lies on a twofold rotation axis. It is N,O-chelated by the deprotonated Schiff base 2-[2-(1H-indol-3-yl)ethyl­imino­meth­yl]phenolate ligand in a square-planar coordination environment. The mol­ecule is linked to a solvent mol­ecule by an indole–dimethyl­formamide N—H(...)O hydrogen bond.

Related literature

For the structures of Schiff bases derived from the consensation of 2-(indol-3-yl)ethyl­amine and other substituted salicylaldehydes, see: Ali et al. (2007a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m787-scheme1.jpg

Experimental

Crystal data

  • [Ni(C17H15N2O)2]·2C3H7NO
  • M r = 731.52
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m787-efi1.jpg
  • a = 38.927 (2) Å
  • b = 5.6999 (3) Å
  • c = 15.7560 (8) Å
  • β = 98.489 (2)°
  • V = 3457.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.61 mm−1
  • T = 103 (2) K
  • 0.70 × 0.32 × 0.07 mm

Data collection

  • Bruker APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.673, T max = 0.958
  • 7704 measured reflections
  • 3875 independent reflections
  • 2900 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.133
  • S = 1.03
  • 3875 reflections
  • 234 parameters
  • H-atom parameters constrained
  • Δρmax = 2.82 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012968/sg2223sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012968/sg2223Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Canterbury, New Zealand, for the diffraction measurements, and the Science Fund (12–02-03–2031) for supporting this study.

supplementary crystallographic information

Comment

We have reported a number of metal complexes of Schiff bases derived from the condensation of salicylaldehyde and a biologically active primary amine. The structure of the presence Schiff base, has not been reported, but it is likely to exist as a zwitterion, 2-{[3-(1H-indol-3-yl)-propenyl]ammonio}phenolate as 2-{[3-(1H-Indol-3-yl)-propenyl]methylammonio}phenolate, synthesized from 2-(indol-3-yl)ethylamine and 2-hydroxy-5-methylacetophenone, exists in this form (Ali et al., 2007a, 2007b). The nickel derivative crystallizes from DMF as a disolvate (Scheme I, Fig. 1). The metal atom is N,O-chelated by the deprotonated Schiff base in a square planar coordination enviroment. The molecule is linked to the solvent molecule by an N–Hindole···ODMF hydrogen bond.

Experimental

Tryptamine (0.30 g, 1.87 mmol) and salicylaldehyde (0.23 g, 1.86 mmol) were heated in ethanol (50 ml) for an hour. The solvent was removed to give the Schiff base. The ligand (0.49 g, 1.91 mmol) and nickel acetate tetrahydrate (0.23 g, 0.93 mmol) were reacted in ethanol (50 ml); several drops of triethylamine were also added. The solvent was removed and the product was recrystallized from DMF.

Refinement

The carbon-bound H atoms were placed at calculated positions (C—H = 0.95–0.98 Å) and were included in the refinement in the riding-model approximation, with U(H) set to 1.2–1.5Ueq(C). The amino H atom also similarly generated [N—H = 0.88Å and U(H) = 1.2Ueq(N)].

Figures

Fig. 1.
Thermal ellipsoid plot of Ni(C17H14N2O)2.2DMF; displacement ellipsoids are drawn at the 70% probability level, and H atoms are shown as spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.

Crystal data

[Ni(C17H14N2O)2]·2C3H7NOF000 = 1544
Mr = 731.52Dx = 1.405 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2399 reflections
a = 38.927 (2) Åθ = 2.6–28.5º
b = 5.6999 (3) ŵ = 0.61 mm1
c = 15.7560 (8) ÅT = 103 (2) K
β = 98.489 (2)ºPlate, yellow
V = 3457.6 (3) Å30.70 × 0.32 × 0.07 mm
Z = 4

Data collection

Bruker APEXII diffractometer3875 independent reflections
Radiation source: medium-focus sealed tube2900 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.030
T = 103(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.6º
Absorption correction: Multi-scan(SADABS; Sheldrick, 1996)h = −48→50
Tmin = 0.673, Tmax = 0.958k = −7→5
7704 measured reflectionsl = −19→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.133  w = 1/[σ2(Fo2) + (0.0586P)2 + 9.176P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3875 reflectionsΔρmax = 0.82 e Å3
234 parametersΔρmin = −0.48 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. A medium-focus collimator of 0.8 mm diameter was used on the diffractometer to measure the somewhat large crystal.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.25000.75000.50000.01379 (15)
O10.27749 (5)0.8616 (4)0.42443 (12)0.0208 (5)
O20.08509 (9)−0.4015 (5)0.56375 (17)0.0564 (9)
N10.23434 (6)0.4881 (4)0.42765 (14)0.0151 (5)
N30.11380 (6)−0.0268 (5)0.48184 (16)0.0224 (6)
H3N0.1102−0.15700.50920.027*
N40.06308 (7)−0.7205 (4)0.62051 (16)0.0215 (5)
C10.29181 (7)0.7412 (5)0.36804 (16)0.0169 (5)
C20.32195 (8)0.8312 (5)0.34033 (17)0.0199 (6)
H20.33110.97760.36180.024*
C30.33829 (8)0.7079 (5)0.28206 (18)0.0215 (6)
H30.35890.76880.26500.026*
C40.32486 (8)0.4956 (6)0.24797 (18)0.0229 (6)
H40.33600.41390.20710.027*
C50.29539 (8)0.4055 (5)0.27382 (17)0.0202 (6)
H50.28600.26180.25010.024*
C60.27889 (7)0.5234 (5)0.33495 (17)0.0168 (6)
C70.24926 (7)0.4181 (5)0.36379 (16)0.0165 (6)
H70.23960.28420.33320.020*
C80.20526 (7)0.3382 (5)0.44577 (18)0.0169 (6)
H8A0.20870.29980.50770.020*
H8B0.20580.18920.41370.020*
C90.16973 (7)0.4520 (5)0.42173 (17)0.0171 (6)
H9A0.16830.59440.45700.021*
H9B0.16660.49970.36070.021*
C100.14497 (8)0.0886 (5)0.48646 (19)0.0211 (6)
H100.16600.03880.52010.025*
C110.14169 (7)0.2850 (5)0.43600 (17)0.0175 (6)
C120.10598 (7)0.2930 (5)0.39755 (17)0.0175 (6)
C130.08600 (8)0.4471 (6)0.34154 (18)0.0229 (7)
H130.09640.58070.31970.028*
C140.05115 (8)0.4034 (6)0.31834 (19)0.0286 (7)
H140.03750.50910.28080.034*
C150.03524 (8)0.2044 (6)0.3492 (2)0.0283 (8)
H150.01110.17790.33190.034*
C160.05416 (8)0.0488 (6)0.40391 (19)0.0249 (7)
H160.0435−0.08510.42480.030*
C170.08943 (8)0.0937 (5)0.42782 (17)0.0192 (6)
C180.08801 (10)−0.5798 (7)0.6027 (2)0.0379 (9)
H180.1111−0.62750.62370.045*
C190.02741 (10)−0.6713 (8)0.5891 (3)0.0472 (10)
H19A0.0258−0.52570.55570.071*
H19B0.0145−0.65370.63760.071*
H19C0.0175−0.80080.55250.071*
C200.07081 (13)−0.9334 (7)0.6694 (3)0.0521 (11)
H20A0.0960−0.95030.68440.078*
H20B0.0615−1.06840.63500.078*
H20C0.0602−0.92580.72200.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0150 (3)0.0131 (3)0.0133 (2)−0.0029 (2)0.00219 (17)−0.0008 (2)
O10.0248 (11)0.0184 (11)0.0203 (10)−0.0039 (9)0.0075 (8)−0.0011 (9)
O20.105 (3)0.0285 (15)0.0453 (15)−0.0269 (16)0.0436 (16)−0.0058 (13)
N10.0133 (12)0.0132 (12)0.0182 (11)−0.0002 (9)−0.0001 (9)0.0026 (9)
N30.0214 (13)0.0202 (13)0.0256 (13)−0.0042 (11)0.0038 (10)0.0072 (11)
N40.0240 (13)0.0171 (13)0.0244 (12)−0.0027 (11)0.0074 (10)0.0012 (10)
C10.0200 (14)0.0164 (13)0.0135 (12)0.0025 (13)−0.0003 (10)0.0036 (12)
C20.0231 (15)0.0189 (14)0.0174 (13)−0.0020 (12)0.0025 (11)0.0020 (11)
C30.0193 (14)0.0256 (17)0.0199 (13)0.0008 (12)0.0042 (11)0.0095 (12)
C40.0265 (16)0.0245 (16)0.0186 (13)0.0070 (13)0.0063 (12)0.0017 (12)
C50.0252 (16)0.0189 (15)0.0163 (13)0.0008 (12)0.0025 (11)−0.0004 (11)
C60.0179 (14)0.0167 (14)0.0154 (12)0.0020 (12)0.0015 (10)0.0022 (11)
C70.0180 (14)0.0171 (14)0.0128 (12)0.0009 (11)−0.0027 (10)0.0005 (11)
C80.0168 (14)0.0147 (13)0.0191 (13)−0.0041 (11)0.0023 (11)−0.0006 (11)
C90.0178 (14)0.0170 (14)0.0163 (13)−0.0013 (12)0.0019 (10)0.0017 (11)
C100.0183 (15)0.0207 (15)0.0242 (14)−0.0010 (12)0.0027 (11)0.0032 (12)
C110.0192 (14)0.0176 (15)0.0161 (12)−0.0006 (11)0.0039 (10)−0.0022 (11)
C120.0204 (14)0.0193 (15)0.0136 (12)−0.0013 (11)0.0052 (10)−0.0027 (11)
C130.0233 (16)0.0268 (17)0.0184 (14)0.0003 (13)0.0020 (12)0.0017 (12)
C140.0201 (16)0.042 (2)0.0217 (14)0.0034 (14)−0.0018 (12)0.0025 (14)
C150.0197 (15)0.040 (2)0.0250 (15)−0.0045 (14)0.0029 (12)−0.0057 (14)
C160.0205 (16)0.0300 (18)0.0255 (15)−0.0066 (13)0.0074 (12)−0.0040 (13)
C170.0198 (15)0.0189 (15)0.0195 (13)−0.0034 (12)0.0050 (11)−0.0020 (12)
C180.043 (2)0.037 (2)0.0393 (19)−0.0171 (17)0.0231 (16)−0.0175 (17)
C190.029 (2)0.064 (3)0.047 (2)−0.0047 (19)0.0017 (17)−0.010 (2)
C200.081 (3)0.032 (2)0.045 (2)0.012 (2)0.016 (2)0.0071 (19)

Geometric parameters (Å, °)

Ni1—O1i1.829 (2)C8—C91.524 (4)
Ni1—O11.829 (2)C8—H8A0.9900
Ni1—N1i1.922 (2)C8—H8B0.9900
Ni1—N11.922 (2)C9—C111.490 (4)
O1—C11.310 (3)C9—H9A0.9900
O2—C181.184 (5)C9—H9B0.9900
N1—C71.297 (3)C10—C111.368 (4)
N1—C81.479 (3)C10—H100.9500
N3—C171.363 (4)C11—C121.433 (4)
N3—C101.373 (4)C12—C131.397 (4)
N3—H3N0.8800C12—C171.423 (4)
N4—C181.320 (4)C13—C141.375 (4)
N4—C191.431 (4)C13—H130.9500
N4—C201.445 (4)C14—C151.412 (5)
C1—C21.408 (4)C14—H140.9500
C1—C61.410 (4)C15—C161.373 (5)
C2—C31.383 (4)C15—H150.9500
C2—H20.9500C16—C171.393 (4)
C3—C41.394 (4)C16—H160.9500
C3—H30.9500C18—H180.9500
C4—C51.372 (4)C19—H19A0.9800
C4—H40.9500C19—H19B0.9800
C5—C61.405 (4)C19—H19C0.9800
C5—H50.9500C20—H20A0.9800
C6—C71.432 (4)C20—H20B0.9800
C7—H70.9500C20—H20C0.9800
O1i—Ni1—O1180.00 (10)C11—C9—H9A109.6
O1i—Ni1—N1i92.81 (9)C8—C9—H9A109.6
O1—Ni1—N1i87.19 (9)C11—C9—H9B109.6
O1i—Ni1—N187.19 (9)C8—C9—H9B109.6
O1—Ni1—N192.81 (9)H9A—C9—H9B108.1
N1i—Ni1—N1180.000 (1)C11—C10—N3110.8 (3)
C1—O1—Ni1127.41 (19)C11—C10—H10124.6
C7—N1—C8114.6 (2)N3—C10—H10124.6
C7—N1—Ni1124.0 (2)C10—C11—C12105.9 (2)
C8—N1—Ni1121.26 (17)C10—C11—C9127.1 (3)
C17—N3—C10108.6 (2)C12—C11—C9127.0 (2)
C17—N3—H3N125.7C13—C12—C17118.4 (3)
C10—N3—H3N125.7C13—C12—C11134.6 (3)
C18—N4—C19120.9 (3)C17—C12—C11107.0 (2)
C18—N4—C20121.4 (3)C14—C13—C12119.3 (3)
C19—N4—C20117.6 (3)C14—C13—H13120.3
O1—C1—C2118.5 (3)C12—C13—H13120.3
O1—C1—C6123.2 (2)C13—C14—C15121.3 (3)
C2—C1—C6118.3 (3)C13—C14—H14119.3
C3—C2—C1120.4 (3)C15—C14—H14119.3
C3—C2—H2119.8C16—C15—C14120.9 (3)
C1—C2—H2119.8C16—C15—H15119.6
C2—C3—C4120.9 (3)C14—C15—H15119.6
C2—C3—H3119.5C15—C16—C17117.9 (3)
C4—C3—H3119.5C15—C16—H16121.1
C5—C4—C3119.5 (3)C17—C16—H16121.1
C5—C4—H4120.2N3—C17—C16130.1 (3)
C3—C4—H4120.2N3—C17—C12107.7 (3)
C4—C5—C6120.7 (3)C16—C17—C12122.2 (3)
C4—C5—H5119.6O2—C18—N4127.9 (4)
C6—C5—H5119.6O2—C18—H18116.1
C5—C6—C1120.0 (3)N4—C18—H18116.1
C5—C6—C7119.2 (3)N4—C19—H19A109.5
C1—C6—C7120.8 (2)N4—C19—H19B109.5
N1—C7—C6126.2 (3)H19A—C19—H19B109.5
N1—C7—H7116.9N4—C19—H19C109.5
C6—C7—H7116.9H19A—C19—H19C109.5
N1—C8—C9113.5 (2)H19B—C19—H19C109.5
N1—C8—H8A108.9N4—C20—H20A109.5
C9—C8—H8A108.9N4—C20—H20B109.5
N1—C8—H8B108.9H20A—C20—H20B109.5
C9—C8—H8B108.9N4—C20—H20C109.5
H8A—C8—H8B107.7H20A—C20—H20C109.5
C11—C9—C8110.4 (2)H20B—C20—H20C109.5
N1i—Ni1—O1—C1153.4 (2)N1—C8—C9—C11176.0 (2)
N1—Ni1—O1—C1−26.6 (2)C17—N3—C10—C110.0 (3)
O1i—Ni1—N1—C7−164.6 (2)N3—C10—C11—C120.2 (3)
O1—Ni1—N1—C715.4 (2)N3—C10—C11—C9−178.0 (3)
O1i—Ni1—N1—C810.6 (2)C8—C9—C11—C1019.2 (4)
O1—Ni1—N1—C8−169.4 (2)C8—C9—C11—C12−158.7 (3)
Ni1—O1—C1—C2−155.2 (2)C10—C11—C12—C13179.0 (3)
Ni1—O1—C1—C623.5 (4)C9—C11—C12—C13−2.8 (5)
O1—C1—C2—C3178.8 (3)C10—C11—C12—C17−0.3 (3)
C6—C1—C2—C30.0 (4)C9—C11—C12—C17177.9 (3)
C1—C2—C3—C41.6 (4)C17—C12—C13—C140.8 (4)
C2—C3—C4—C5−1.3 (4)C11—C12—C13—C14−178.5 (3)
C3—C4—C5—C6−0.8 (4)C12—C13—C14—C15−0.7 (5)
C4—C5—C6—C12.4 (4)C13—C14—C15—C160.4 (5)
C4—C5—C6—C7−176.7 (3)C14—C15—C16—C170.0 (4)
O1—C1—C6—C5179.3 (3)C10—N3—C17—C16−178.7 (3)
C2—C1—C6—C5−2.0 (4)C10—N3—C17—C12−0.2 (3)
O1—C1—C6—C7−1.6 (4)C15—C16—C17—N3178.4 (3)
C2—C1—C6—C7177.1 (3)C15—C16—C17—C120.1 (4)
C8—N1—C7—C6−177.0 (3)C13—C12—C17—N3−179.1 (2)
Ni1—N1—C7—C6−1.5 (4)C11—C12—C17—N30.3 (3)
C5—C6—C7—N1169.8 (3)C13—C12—C17—C16−0.4 (4)
C1—C6—C7—N1−9.3 (4)C11—C12—C17—C16179.0 (3)
C7—N1—C8—C9−108.6 (3)C19—N4—C18—O22.6 (5)
Ni1—N1—C8—C975.7 (3)C20—N4—C18—O2−179.7 (3)

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3N···O20.881.972.811 (3)159

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2223).

References

  • Ali, H. M., Emmy Maryati, O. & Ng, S. W. (2007a). Acta Cryst. E63, o3458.
  • Ali, H. M., Zuraini, K., Wan Jefrey, B. & Ng, S. W. (2007b). Acta Cryst. E63, o1729–o1730.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography