PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1061.
Published online 2008 May 10. doi:  10.1107/S1600536808013706
PMCID: PMC2961388

2-(4-Iodo­phen­yl)-5-methyl-3-methyl­sulfinyl-1-benzofuran

Abstract

The title compound, C16H13IO2S, was prepared by the oxidation of 2-(4-iodo­phen­yl)-5-methyl-3-methyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The 4-iodo­phenyl ring makes a dihedral angle of 37.97 (9)° with the plane of the benzofuran fragment, and the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of this plane. The mol­ecular packing is stabilized by C—H(...)π inter­actions between H atoms on the 4-iodo­phenyl ring and the benzofuran rings, and by an I(...)O halogen bond of 3.252 (2) Å with a nearly linear C—I(...)O angle of 163.06 (8)°. In addition, the stacked mol­ecules exhibit inversion-related S(...)O contacts [3.209 (2) Å] involving the sulfinyl groups.

Related literature

For the crystal structures of similar 2-aryl-5-methyl-3-methyl­sulfinyl-1-benzofuran compounds, see: Choi et al. (2007a [triangle],b [triangle]). For a review of halogen bonding, see: Politzer et al. (2007 [triangle]). For details of sulfin­yl–sulfinyl inter­actions, see: Choi et al. (2007c [triangle]). For a review of carbon­yl–carbonyl inter­actions, see: Allen et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1061-scheme1.jpg

Experimental

Crystal data

  • C16H13IO2S
  • M r = 396.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1061-efi8.jpg
  • a = 9.258 (2) Å
  • b = 15.939 (3) Å
  • c = 10.299 (2) Å
  • β = 103.471 (3)°
  • V = 1477.9 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.31 mm−1
  • T = 173 (2) K
  • 0.40 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.443, T max = 0.508
  • 8743 measured reflections
  • 3227 independent reflections
  • 2934 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.065
  • S = 1.15
  • 3227 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.94 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013706/sj2496sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013706/sj2496Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

This work is related to our preceding communications on the synthesis and structure of 2-aryl-5-methyl-3-methylsulfinyl-1-benzofuran derivatives, viz. 2-(4-bromophenyl)-5-methyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007a) and 2-(4-bromophenyl)-5,7-dimethyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007b). Here we report the crystal structure of the title compound, 2-(4-iodophenyl)-5-methyl-3-methylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.008Å from the least-squares plane defined by the nine constituent atoms. The 4-iodophenyl ring (C9—C14) makes a dihedral angle of 37.97 (9)° with the plane of the benzofuran fragment. The molecular packing (Fig. 2) is stabilized by two different C—H···π interactions within each stack of molecules; one between a 4-iodophenyl H atom and the benzene ring (Cg1i), with a C10—H10···Cg1i separation of 3.617 (4) Å, and a second between a 4-iodophenyl H atom and the furan ring (Cg2i), with a C11—H11···Cg2i separation of 3.643 (4) Å, (Fig. 2 and Table 1; Cg1 and Cg2 are the centroids of the C2—C7 benzene ring and the O1/C8/C1/C2/C7 furan ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by an I···O halogen bond (Politzer et al., 2007) between the iodine atom and the oxygen of a neighbouring S═O unit, with a I···O2ii distance of 3.252 (2) Å (symmetry code as Fig. 2). In addition, the crystal packing exhibits a sulfinyl-sulfinyl interaction (Choi et al., 2007c) interpreted as similar to a type-II carbonyl-carbonyl interaction (Allen et al., 1998), with S···O2iii and O2···Siii distance of 3.209 (2)Å (symmetry code as in Fig. 2)

Experimental

3-Chloroperoxybenzoic acid (77%, 247 mg, 1.1 mmol) was added in small portions to a stirred solution of 2-(4-iodophenyl)-5-methyl-3-methylsulanyl-1-benzofuran (380 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After stirring at room temperature for 2 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 84%, m.p. 472–473 K; Rf = 0.61 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of title compound in tetrahydrofuran at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.48 (s, 3H), 3.11 (s, 3H), 7.22 (d, J = 8.04 Hz, 1H), 7.42 (d, J = 8.44 Hz, 1H), 7.75 (d, J = 6.96 Hz, 2H), 7.85 (d, J = 6.96 Hz, 2H), 7.99 (s, 1H); EI—MS 396 [M+].

Refinement

All H atoms were geometrically located in ideal positions and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
C—H···π, I···O halogen bond and S···O interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry code: (i) x - 1/2, -y + 3/2, z - ...

Crystal data

C16H13IO2SF000 = 776
Mr = 396.22Dx = 1.781 Mg m3
Monoclinic, P21/nMelting point = 472–473 K
Hall symbol: -P 2ynMo Kα radiation λ = 0.71073 Å
a = 9.258 (2) ÅCell parameters from 6653 reflections
b = 15.939 (3) Åθ = 2.4–28.2º
c = 10.299 (2) ŵ = 2.31 mm1
β = 103.471 (3)ºT = 173 (2) K
V = 1477.9 (5) Å3Block, colorless
Z = 40.40 × 0.30 × 0.30 mm

Data collection

Bruker SMART CCD diffractometer3227 independent reflections
Radiation source: fine-focus sealed tube2934 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 27.0º
T = 173(2) Kθmin = 2.4º
[var phi] and ω scansh = −11→6
Absorption correction: multi-scan(SADABS; Sheldrick, 2000)k = −20→20
Tmin = 0.443, Tmax = 0.508l = −11→13
8743 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.065  w = 1/[σ2(Fo2) + (0.0226P)2 + 1.1637P] where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
3227 reflectionsΔρmax = 0.54 e Å3
183 parametersΔρmin = −0.94 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I−0.134684 (19)0.613119 (11)−0.281817 (17)0.03372 (7)
S0.51165 (7)0.54138 (4)0.32703 (6)0.02482 (13)
O10.61196 (19)0.66982 (11)0.02820 (17)0.0251 (4)
O20.5977 (2)0.57384 (14)0.45895 (18)0.0389 (5)
C10.5913 (3)0.59181 (15)0.2070 (2)0.0220 (5)
C20.7456 (3)0.61452 (15)0.2246 (2)0.0231 (5)
C30.8760 (3)0.60093 (15)0.3218 (3)0.0262 (5)
H30.87460.56870.39910.031*
C41.0087 (3)0.63528 (17)0.3040 (3)0.0309 (6)
C51.0091 (3)0.68158 (17)0.1884 (3)0.0329 (6)
H51.10060.70380.17710.039*
C60.8810 (3)0.69632 (16)0.0895 (3)0.0308 (6)
H60.88240.72770.01140.037*
C70.7515 (3)0.66243 (15)0.1120 (2)0.0249 (5)
C80.5155 (3)0.62626 (14)0.0892 (2)0.0228 (5)
C90.3610 (3)0.62508 (15)0.0136 (2)0.0217 (5)
C100.3001 (3)0.69536 (16)−0.0607 (3)0.0270 (5)
H100.35720.7453−0.05640.032*
C110.1575 (3)0.69273 (16)−0.1403 (3)0.0284 (5)
H110.11620.7410−0.18930.034*
C120.0746 (3)0.61946 (15)−0.1483 (2)0.0235 (5)
C130.1323 (3)0.54923 (15)−0.0743 (2)0.0230 (5)
H130.07460.4995−0.07970.028*
C140.2744 (3)0.55201 (15)0.0075 (2)0.0218 (5)
H140.31340.50440.05950.026*
C151.1498 (3)0.62338 (19)0.4100 (3)0.0417 (7)
H15A1.13450.64250.49620.063*
H15B1.22980.65610.38670.063*
H15C1.17690.56380.41600.063*
C160.5769 (3)0.43689 (17)0.3073 (3)0.0317 (6)
H16A0.68330.43860.30960.048*
H16B0.52270.41390.22160.048*
H16C0.56040.40130.38010.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I0.02443 (11)0.04004 (12)0.03256 (11)−0.00188 (7)−0.00175 (7)0.00229 (7)
S0.0250 (3)0.0303 (3)0.0206 (3)−0.0021 (2)0.0083 (2)−0.0031 (2)
O10.0205 (8)0.0272 (9)0.0277 (9)−0.0025 (7)0.0057 (7)0.0030 (7)
O20.0418 (12)0.0538 (13)0.0214 (9)−0.0143 (10)0.0082 (8)−0.0077 (9)
C10.0224 (12)0.0229 (11)0.0215 (11)−0.0001 (9)0.0066 (9)−0.0038 (9)
C20.0239 (13)0.0225 (11)0.0233 (11)0.0009 (9)0.0062 (10)−0.0069 (9)
C30.0251 (13)0.0251 (12)0.0274 (12)0.0031 (9)0.0039 (10)−0.0077 (9)
C40.0231 (13)0.0290 (13)0.0382 (14)0.0037 (10)0.0024 (11)−0.0142 (11)
C50.0209 (13)0.0293 (13)0.0497 (16)−0.0028 (10)0.0108 (11)−0.0095 (12)
C60.0257 (13)0.0281 (13)0.0413 (15)−0.0005 (10)0.0133 (11)−0.0007 (11)
C70.0212 (12)0.0227 (12)0.0313 (12)−0.0002 (9)0.0067 (10)−0.0042 (10)
C80.0217 (12)0.0216 (11)0.0259 (12)−0.0013 (9)0.0076 (10)−0.0025 (9)
C90.0208 (12)0.0245 (12)0.0203 (11)−0.0006 (9)0.0055 (9)−0.0019 (9)
C100.0252 (13)0.0236 (12)0.0319 (13)−0.0040 (10)0.0062 (10)0.0030 (10)
C110.0286 (13)0.0250 (12)0.0308 (13)0.0012 (10)0.0051 (11)0.0068 (10)
C120.0190 (11)0.0295 (13)0.0221 (11)0.0002 (9)0.0046 (9)−0.0014 (9)
C130.0252 (12)0.0211 (11)0.0245 (11)−0.0034 (9)0.0095 (10)−0.0024 (9)
C140.0247 (12)0.0209 (11)0.0202 (11)0.0007 (9)0.0062 (9)0.0014 (9)
C150.0240 (14)0.0445 (17)0.0514 (18)0.0020 (12)−0.0017 (13)−0.0162 (14)
C160.0351 (15)0.0325 (14)0.0296 (13)0.0038 (11)0.0116 (11)0.0046 (11)

Geometric parameters (Å, °)

I—O2i3.252 (2)C6—H60.9500
I—C122.101 (3)C8—C91.461 (3)
S—O21.4981 (19)C9—C101.399 (3)
S—O2ii3.209 (2)C9—C141.407 (3)
S—C11.773 (2)C10—C111.383 (4)
S—C161.799 (3)C10—H100.9500
O1—C71.381 (3)C11—C121.389 (3)
O1—C81.391 (3)C11—H110.9500
C1—C81.367 (3)C12—C131.389 (3)
C1—C21.444 (3)C13—C141.388 (3)
C2—C31.394 (4)C13—H130.9500
C2—C71.400 (3)C14—H140.9500
C3—C41.395 (4)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.402 (4)C15—H15C0.9800
C4—C151.507 (4)C16—H16A0.9800
C5—C61.391 (4)C16—H16B0.9800
C5—H50.9500C16—H16C0.9800
C6—C71.383 (4)
C12—I—O2i163.06 (8)C10—C9—C8120.1 (2)
O2—S—C1104.84 (12)C14—C9—C8120.7 (2)
O2—S—C16107.47 (13)C11—C10—C9120.5 (2)
C1—S—C1697.80 (12)C11—C10—H10119.8
C7—O1—C8106.30 (18)C9—C10—H10119.8
C8—C1—C2107.4 (2)C10—C11—C12119.9 (2)
C8—C1—S126.1 (2)C10—C11—H11120.1
C2—C1—S125.89 (18)C12—C11—H11120.1
C3—C2—C7119.1 (2)C13—C12—C11120.6 (2)
C3—C2—C1135.8 (2)C13—C12—I119.88 (18)
C7—C2—C1105.1 (2)C11—C12—I119.44 (18)
C2—C3—C4119.1 (2)C14—C13—C12119.7 (2)
C2—C3—H3120.5C14—C13—H13120.1
C4—C3—H3120.5C12—C13—H13120.1
C3—C4—C5119.7 (2)C13—C14—C9120.2 (2)
C3—C4—C15119.8 (3)C13—C14—H14119.9
C5—C4—C15120.6 (3)C9—C14—H14119.9
C6—C5—C4122.7 (2)C4—C15—H15A109.5
C6—C5—H5118.7C4—C15—H15B109.5
C4—C5—H5118.7H15A—C15—H15B109.5
C7—C6—C5115.9 (3)C4—C15—H15C109.5
C7—C6—H6122.1H15A—C15—H15C109.5
C5—C6—H6122.1H15B—C15—H15C109.5
O1—C7—C6125.7 (2)S—C16—H16A109.5
O1—C7—C2110.7 (2)S—C16—H16B109.5
C6—C7—C2123.6 (2)H16A—C16—H16B109.5
C1—C8—O1110.5 (2)S—C16—H16C109.5
C1—C8—C9134.8 (2)H16A—C16—H16C109.5
O1—C8—C9114.6 (2)H16B—C16—H16C109.5
C10—C9—C14119.1 (2)
O2—S—C1—C8−136.9 (2)C1—C2—C7—C6−179.6 (2)
C16—S—C1—C8112.7 (2)C2—C1—C8—O10.4 (3)
O2—S—C1—C233.6 (2)S—C1—C8—O1172.33 (17)
C16—S—C1—C2−76.9 (2)C2—C1—C8—C9178.0 (3)
C8—C1—C2—C3178.7 (3)S—C1—C8—C9−10.1 (4)
S—C1—C2—C36.8 (4)C7—O1—C8—C1−0.5 (3)
C8—C1—C2—C7−0.2 (3)C7—O1—C8—C9−178.63 (19)
S—C1—C2—C7−172.09 (18)C1—C8—C9—C10146.5 (3)
C7—C2—C3—C4−0.1 (3)O1—C8—C9—C10−36.0 (3)
C1—C2—C3—C4−178.9 (3)C1—C8—C9—C14−37.5 (4)
C2—C3—C4—C5−0.9 (4)O1—C8—C9—C14140.0 (2)
C2—C3—C4—C15178.2 (2)C14—C9—C10—C11−0.8 (4)
C3—C4—C5—C61.0 (4)C8—C9—C10—C11175.3 (2)
C15—C4—C5—C6−178.1 (2)C9—C10—C11—C12−1.0 (4)
C4—C5—C6—C70.1 (4)C10—C11—C12—C131.7 (4)
C8—O1—C7—C6179.8 (2)C10—C11—C12—I−174.85 (19)
C8—O1—C7—C20.4 (2)C11—C12—C13—C14−0.6 (4)
C5—C6—C7—O1179.4 (2)I—C12—C13—C14175.94 (17)
C5—C6—C7—C2−1.2 (4)C12—C13—C14—C9−1.2 (3)
C3—C2—C7—O1−179.3 (2)C10—C9—C14—C131.9 (3)
C1—C2—C7—O1−0.2 (3)C8—C9—C14—C13−174.2 (2)
C3—C2—C7—C61.3 (4)

Symmetry codes: (i) x−1, y, z−1; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1iii0.953.013.617 (4)125
C11—H11···Cg2iii0.952.773.643 (4)148

Symmetry codes: (iii) x−1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2496).

References

  • Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.
  • Brandenburg, K. (1998). DIAMOND, Crystal Impact GbR. Bonn, Germany.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o3295.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4282.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007c). Acta Cryst. E63, o4811.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model.13, 305–311. [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography