PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m792–m793.
Published online 2008 May 10. doi:  10.1107/S1600536808013196
PMCID: PMC2961384

Poly[diaqua­bis(μ2-azido-κ2 N 1:N 1)bis­(μ3-1-oxoisonicotinato-κ3 O:O′:O′′)dicadmium(II)]

Abstract

In the title compound, [Cd2(C6H4NO3)2(N3)2(H2O)2]n, one CdII atom is located on an inversion center and is coordinated by four O atoms from four bridging 1-oxoisonicotinate ligands and two N atoms of two bridging azide ligands in a slightly distorted octa­hedral geometry. The other CdII atom, also lying on an inversion center, is coordinated by four O atoms from two bridging 1-oxoisonicotinate ligands and two water mol­ecules and two N atoms of two bridging azide ligands in a slightly distorted octa­hedral geometry. The Cd atoms are connected via the 1-oxoisonicotinate and azide ligands into a two-dimensional coordination network. The crystal structure involves O—H(...)N and O—H(...)O hydrogen bonds.

Related literature

For general background, see: Du et al. (2006 [triangle]); Dybtsev et al. (2004 [triangle]). For related structures, see: Bai et al. (2004 [triangle]); He et al. (2005 [triangle]); Zhao et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m792-scheme1.jpg

Experimental

Crystal data

  • [Cd2(C6H4NO3)2(N3)2(H2O)2]
  • M r = 621.10
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m792-efi1.jpg
  • a = 6.5409 (17) Å
  • b = 7.850 (2) Å
  • c = 9.410 (3) Å
  • α = 99.668 (6)°
  • β = 97.164 (6)°
  • γ = 107.566 (5)°
  • V = 446.1 (2) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 2.45 mm−1
  • T = 223 (2) K
  • 0.3 × 0.2 × 0.2 mm

Data collection

  • Rigaku Scxmini 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.612, T max = 0.613
  • 5082 measured reflections
  • 1567 independent reflections
  • 1438 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.087
  • S = 1.08
  • 1567 reflections
  • 139 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.60 e Å−3
  • Δρmin = −1.02 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2006 [triangle]) and SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013196/hy2123sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013196/hy2123Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

There is currently considerable interest in the synthesis and characterization of metal–organic frameworks because of their potential applications in molecular adsorption and separation processes, gas storage, ion exchange, catalysis, sensor technology and electronics (Du et al., 2006; Dybtsev et al., 2004). The isonicotinic acid N-oxide ligand possesses a longer bridging spacer and richer coordination modes to form a fascinating structure (He et al., 2005; Zhao et al., 2007). It is well known that azide anion is an excellent bridging ligand (Bai et al., 2004). Therefore, we expect to obtain higher dimensional structures based on isonicotinic acid N-oxide and azide ligands and transition metal ions through the control of their molar ratios. We report here the synthesis and crystal structure of the title compound.

In the title compound, the Cd1 atom is located on an inversion center and is coordinated by four O atoms from four bridging isonicotinate-N-oxide ligands and two N atoms of two bridging azide ligands in a slightly distorted octahedral geometry. The Cd2 atom, also lying on an inversion center, is coordinated by four O atoms from two bridging isonicotinate-N-oxide ligands and two water molecules and two N atoms of two azide ligands in a slightly distorted octahedral geometry (Fig. 1; Table 1). The Cd atoms are connected via the isonicotinate-N-oxide and azide ligands into a two-dimensional coordination network. Furthermore, a three-dimensional supramolecular network is formed by the intermolecular O—H···N and O—H···O hydrogen bonds (Fig. 2; Table 2).

Experimental

All reagents and solvents were used as obtained without further purification. Cd(NO3)2.4H2O (0.062 g, 0.2 mmol), isonicotinic acid N-oxide (0.028 g, 0.2 mmol), NaN3 (0.013 g, 0.2 mmol) and NaOH (0.016 g, 0.4 mmol) were dissolved in distilled water (10 ml). The mixture was sealed in a Teflon-lined stainless steel vessel and held at 443 K for one week. The vessel was gradually cooled to room temperature and colorless crystals suitable for crystallographic analysis were obtained.

Refinement

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of the water molecule were located in a difference Fourier map and fixed in the refinements with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
The asymmetric unit of the title compound, together with symmetry-related atoms to complete the coordination units. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, -y + 1, ...
Fig. 2.
Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cd2(C6H4NO3)2(N3)2(H2O)2]Z = 1
Mr = 621.10F(000) = 300
Triclinic, P1Dx = 2.312 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5409 (17) ÅCell parameters from 2159 reflections
b = 7.850 (2) Åθ = 3.1–26.8°
c = 9.410 (3) ŵ = 2.45 mm1
α = 99.668 (6)°T = 223 K
β = 97.164 (6)°Block, colorless
γ = 107.566 (5)°0.3 × 0.2 × 0.2 mm
V = 446.1 (2) Å3

Data collection

Rigaku Scxmini 1K CCD area-detector diffractometer1567 independent reflections
Radiation source: fine-focus sealed tube1438 reflections with I > 2σ(I)
graphiteRint = 0.022
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 2.8°
thin–slice ω scansh = −7→7
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −9→7
Tmin = 0.612, Tmax = 0.613l = −11→10
5082 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.05P)2 + 1.3747P] where P = (Fo2 + 2Fc2)/3
1567 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.60 e Å3
1 restraintΔρmin = −1.02 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.00000.50000.50000.01556 (17)
Cd20.00000.00000.50000.01683 (17)
O10.1884 (5)0.4600 (4)0.7066 (3)0.0244 (7)
O20.0598 (6)0.1674 (4)0.7283 (3)0.0311 (8)
O30.3130 (5)0.5495 (5)1.3892 (3)0.0270 (7)
O40.3676 (5)0.1301 (5)0.4778 (4)0.0295 (8)
H4B0.43610.20550.55460.035*
H4C0.41270.09510.39450.035*
N10.1164 (6)0.7997 (5)0.6110 (4)0.0201 (8)
N20.2664 (6)0.8640 (5)0.7131 (4)0.0227 (8)
N30.4108 (8)0.9283 (6)0.8078 (6)0.0506 (14)
N40.2847 (6)0.5005 (5)1.2437 (4)0.0208 (8)
C10.3105 (6)0.6288 (6)1.1625 (5)0.0213 (9)
H1A0.35340.75291.20950.026*
C20.2752 (6)0.5808 (6)1.0126 (5)0.0171 (8)
H2A0.29540.67140.95690.021*
C30.2086 (6)0.3959 (6)0.9430 (4)0.0168 (8)
C40.1925 (7)0.2671 (6)1.0312 (5)0.0216 (9)
H4A0.15470.14230.98730.026*
C50.2314 (7)0.3216 (6)1.1804 (5)0.0240 (9)
H5A0.22110.23451.23910.029*
C60.1483 (7)0.3368 (6)0.7782 (5)0.0189 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0215 (3)0.0136 (2)0.0112 (2)0.00553 (18)0.00313 (17)0.00218 (17)
Cd20.0216 (3)0.0152 (3)0.0132 (3)0.00717 (18)0.00221 (17)0.00086 (17)
O10.0288 (16)0.0273 (17)0.0148 (15)0.0069 (14)0.0003 (12)0.0050 (13)
O20.049 (2)0.0251 (18)0.0161 (15)0.0136 (16)0.0021 (14)−0.0019 (13)
O30.0253 (16)0.0362 (19)0.0095 (15)−0.0004 (14)0.0045 (12)−0.0036 (13)
O40.0259 (17)0.0337 (19)0.0214 (17)0.0014 (15)0.0050 (14)0.0010 (14)
N10.028 (2)0.0120 (16)0.0175 (18)0.0069 (15)−0.0020 (16)0.0005 (14)
N20.027 (2)0.0149 (17)0.027 (2)0.0079 (16)0.0011 (19)0.0071 (16)
N30.054 (3)0.024 (2)0.055 (3)0.004 (2)−0.029 (3)0.003 (2)
N40.0178 (17)0.028 (2)0.0146 (17)0.0054 (15)0.0059 (14)0.0020 (15)
C10.0146 (19)0.024 (2)0.022 (2)0.0038 (17)0.0020 (17)0.0015 (18)
C20.0159 (19)0.020 (2)0.018 (2)0.0079 (16)0.0050 (16)0.0061 (16)
C30.0133 (18)0.020 (2)0.017 (2)0.0061 (16)0.0044 (16)0.0029 (16)
C40.030 (2)0.017 (2)0.020 (2)0.0099 (18)0.0079 (18)0.0047 (17)
C50.025 (2)0.028 (2)0.017 (2)0.0057 (19)0.0076 (18)0.0046 (18)
C60.017 (2)0.027 (2)0.016 (2)0.0120 (18)0.0034 (16)0.0047 (18)

Geometric parameters (Å, °)

Cd1—N12.259 (3)O4—H4B0.8300
Cd1—N1i2.259 (3)O4—H4C0.9000
Cd1—O12.289 (3)N1—N21.201 (5)
Cd1—O1i2.289 (3)N1—Cd2vii2.284 (3)
Cd1—O3ii2.370 (3)N2—N31.137 (6)
Cd1—O3iii2.370 (3)N4—C11.347 (6)
Cd2—O22.242 (3)N4—C51.349 (6)
Cd2—O2iv2.242 (3)C1—C21.369 (6)
Cd2—N1v2.284 (3)C1—H1A0.9400
Cd2—N1i2.284 (3)C2—C31.397 (6)
Cd2—O4iv2.363 (3)C2—H2A0.9400
Cd2—O42.363 (3)C3—C41.401 (6)
O1—C61.252 (5)C3—C61.507 (6)
O2—C61.257 (5)C4—C51.365 (6)
O3—N41.332 (5)C4—H4A0.9400
O3—Cd1vi2.370 (3)C5—H5A0.9400
N1—Cd1—N1i180.000 (1)C6—O2—Cd2130.6 (3)
N1—Cd1—O185.90 (12)N4—O3—Cd1vi118.5 (2)
N1i—Cd1—O194.10 (12)Cd2—O4—H4B109.5
N1—Cd1—O1i94.10 (12)Cd2—O4—H4C120.1
N1i—Cd1—O1i85.90 (12)H4B—O4—H4C130.4
O1—Cd1—O1i180.0N2—N1—Cd1122.0 (3)
N1—Cd1—O3ii90.18 (12)N2—N1—Cd2vii117.2 (3)
N1i—Cd1—O3ii89.82 (12)Cd1—N1—Cd2vii119.53 (15)
O1—Cd1—O3ii89.01 (11)N3—N2—N1178.2 (5)
O1i—Cd1—O3ii90.99 (11)O3—N4—C1120.0 (4)
N1—Cd1—O3iii89.82 (12)O3—N4—C5118.9 (4)
N1i—Cd1—O3iii90.18 (12)C1—N4—C5121.2 (4)
O1—Cd1—O3iii90.99 (11)N4—C1—C2120.9 (4)
O1i—Cd1—O3iii89.01 (11)N4—C1—H1A119.5
O3ii—Cd1—O3iii180.0C2—C1—H1A119.5
O2—Cd2—O2iv180.0C1—C2—C3119.4 (4)
O2—Cd2—N1v85.06 (12)C1—C2—H2A120.3
O2iv—Cd2—N1v94.94 (12)C3—C2—H2A120.3
O2—Cd2—N1i94.94 (12)C2—C3—C4118.0 (4)
O2iv—Cd2—N1i85.06 (12)C2—C3—C6120.9 (4)
N1v—Cd2—N1i180.000 (1)C4—C3—C6121.1 (4)
O2—Cd2—O4iv87.87 (12)C5—C4—C3120.4 (4)
O2iv—Cd2—O4iv92.13 (12)C5—C4—H4A119.8
N1v—Cd2—O4iv94.08 (12)C3—C4—H4A119.8
N1i—Cd2—O4iv85.92 (12)N4—C5—C4119.9 (4)
O2—Cd2—O492.13 (12)N4—C5—H5A120.0
O2iv—Cd2—O487.87 (12)C4—C5—H5A120.0
N1v—Cd2—O485.92 (12)O1—C6—O2127.4 (4)
N1i—Cd2—O494.08 (12)O1—C6—C3117.1 (4)
O4iv—Cd2—O4180.0O2—C6—C3115.5 (4)
C6—O1—Cd1132.5 (3)
N1—Cd1—O1—C6141.5 (4)O3—N4—C1—C2−177.8 (4)
N1i—Cd1—O1—C6−38.5 (4)C5—N4—C1—C22.5 (6)
O3ii—Cd1—O1—C651.2 (4)N4—C1—C2—C30.8 (6)
O3iii—Cd1—O1—C6−128.8 (4)C1—C2—C3—C4−3.5 (6)
N1v—Cd2—O2—C6136.6 (4)C1—C2—C3—C6174.4 (4)
N1i—Cd2—O2—C6−43.4 (4)C2—C3—C4—C52.9 (6)
O4iv—Cd2—O2—C6−129.1 (4)C6—C3—C4—C5−174.9 (4)
O4—Cd2—O2—C650.9 (4)O3—N4—C5—C4177.2 (4)
O1—Cd1—N1—N217.4 (4)C1—N4—C5—C4−3.1 (6)
O1i—Cd1—N1—N2−162.6 (4)C3—C4—C5—N40.3 (7)
O3ii—Cd1—N1—N2106.4 (4)Cd1—O1—C6—O238.1 (7)
O3iii—Cd1—N1—N2−73.6 (4)Cd1—O1—C6—C3−140.8 (3)
O1—Cd1—N1—Cd2vii−176.10 (19)Cd2—O2—C6—O115.1 (7)
O1i—Cd1—N1—Cd2vii3.90 (19)Cd2—O2—C6—C3−166.0 (3)
O3ii—Cd1—N1—Cd2vii−87.11 (18)C2—C3—C6—O19.4 (6)
O3iii—Cd1—N1—Cd2vii92.89 (18)C4—C3—C6—O1−172.8 (4)
Cd1vi—O3—N4—C1103.7 (4)C2—C3—C6—O2−169.6 (4)
Cd1vi—O3—N4—C5−76.7 (4)C4—C3—C6—O28.1 (6)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z+2; (iii) x, y, z−1; (iv) −x, −y, −z+1; (v) x, y−1, z; (vi) x, y, z+1; (vii) x, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4C···N3viii0.902.363.239 (7)167
O4—H4B···O3ix0.832.052.716 (4)137

Symmetry codes: (viii) −x+1, −y+1, −z+1; (ix) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2123).

References

  • Bai, L.-X., Han, W., Wang, W.-Z., Liu, X., Yan, S.-P. & Liao, D.-Z. (2004). Acta Cryst. E60, m953–m954.
  • Du, M., Zhang, Z.-H., Zhao, X.-J. & Xu, Q. (2006). Inorg. Chem.45, 5785–5792. [PubMed]
  • Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc.126, 32–33. [PubMed]
  • He, Z., Gao, E. Q., Wang, Z. M., Yan, C. H. & Kurmoo, M. (2005). Inorg. Chem.44, 862–874. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhao, Y.-H., Xu, H.-B., Shao, K.-Z., Xing, Y., Su, Z.-M. & Ma, J.-F. (2007). Cryst. Growth Des.7, 513–520.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography