PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1053.
Published online 2008 May 10. doi:  10.1107/S160053680800812X
PMCID: PMC2961383

(E)-4-[(4-Amino-5-bromo­pyridin-3-yl)­iminometh­yl]phenol

Abstract

In the mol­ecule of the title compound, C12H10BrN3O, the pyridine and benzene rings are oriented at a dihedral angle of 34.93 (3)°. Intra­molecular N—H(...)N and N—H(...)Br hydrogen bonds result in the formation of two non-planar five-membered rings. In the crystal structure, inter­molecular O—H(...)N and N—H(...)O hydrogen bonds link the mol­ecules to form a three-dimensional network.

Related literature

For general background, see: Liu et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1053-scheme1.jpg

Experimental

Crystal data

  • C12H10BrN3O
  • M r = 292.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1053-efi1.jpg
  • a = 4.9607 (10) Å
  • b = 15.586 (3) Å
  • c = 14.906 (3) Å
  • β = 95.65 (3)°
  • V = 1146.9 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.57 mm−1
  • T = 113 (2) K
  • 0.10 × 0.08 × 0.06 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.717, T max = 0.814
  • 14191 measured reflections
  • 2739 independent reflections
  • 2123 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.100
  • S = 1.02
  • 2739 reflections
  • 163 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800812X/hk2438sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800812X/hk2438Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff bases, as substrates, are important organic intermediates. Their recent applications in asymmetric catalytic hydrogenation, asymmetric chemical reduction and oxidation and asymmetric alkylidation of carbon atom, as well as reactions with Lawessen regent are very active (Liu et al., 2002). We have recently synthesized the novel title compound, (I), and report herein its crystal structure.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are within normal ranges. Rings A (N1/C1–C5) and B (C7–C12) are, of course, planar and the dihedral angle between them is A/B = 34.93 (3)°. The intramolecular N—H···N and N—H···Br hydrogen bonds (Table 1) result in the formation of two non-planar five-membered rings; C (N2/C4/C5/N3/H3B) and D (Br1/C1/C5/N3/H3A).

In the crystal structure, intermolecular O—H···N and N—H···O hydrogen bonds (Table 1) link the molecules to form a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

5-bromopyridine-3,4-diamine (1.88 g, 10 mmol) was added to a solution of 4-hydroxybenzaldehyde (1.22 g, 10 mmol)in MeOH (50 ml). The solution was refluxed for 10 h, and then dried over magnesium sulfate, filtered and the volatiles were removed under reduced pressure. The crude product was further purified and recystallized from MeOH affording yellow crystals of (I) (yield; 70%).

Refinement

H atoms (for NH2) were located in a difference synthesis and refined isotropically [N—H = 0.876 (10) and 0.889 (10) Å; Uiso(H) = 0.028 (8) and 0.027 (8) Å2]. The remaining H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for aromatic H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level.
Fig. 2.
A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C12H10BrN3OF000 = 584
Mr = 292.14Dx = 1.692 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3259 reflections
a = 4.9607 (10) Åθ = 1.9–27.8º
b = 15.586 (3) ŵ = 3.57 mm1
c = 14.906 (3) ÅT = 113 (2) K
β = 95.65 (3)ºPlate, yellow
V = 1146.9 (4) Å30.10 × 0.08 × 0.06 mm
Z = 4

Data collection

Rigaku Saturn diffractometer2739 independent reflections
Radiation source: rotating anode2123 reflections with I > 2σ(I)
Monochromator: confocalRint = 0.053
T = 113(2) Kθmax = 27.9º
ω scansθmin = 2.6º
Absorption correction: multi-scan(Blessing, 1995)h = −6→6
Tmin = 0.717, Tmax = 0.814k = −20→20
14191 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100  w = 1/[σ2(Fo2) + (0.0558P)2 + 0.0115P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2739 reflectionsΔρmax = 0.53 e Å3
163 parametersΔρmin = −0.59 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.22060 (6)0.579793 (19)0.40491 (2)0.03830 (14)
O11.2134 (4)0.29970 (11)−0.18529 (12)0.0258 (4)
H11.27910.2515−0.18710.039*
N1−0.0149 (4)0.34708 (13)0.29398 (14)0.0207 (5)
N20.4754 (4)0.40060 (14)0.12855 (15)0.0214 (5)
N30.5400 (5)0.53733 (15)0.23987 (17)0.0263 (5)
C10.1953 (5)0.48149 (16)0.32940 (17)0.0213 (5)
C20.0159 (5)0.41727 (16)0.34483 (18)0.0220 (6)
H2−0.08860.42310.39300.026*
C30.1392 (5)0.34101 (15)0.22483 (17)0.0197 (5)
H30.12060.29210.18900.024*
C40.3231 (5)0.40235 (16)0.20351 (17)0.0199 (5)
C50.3553 (5)0.47740 (16)0.25818 (17)0.0202 (5)
C60.5619 (5)0.32877 (16)0.10100 (17)0.0209 (5)
H60.52000.27890.13100.025*
C70.7226 (5)0.32179 (16)0.02482 (17)0.0192 (5)
C80.7946 (5)0.39343 (16)−0.02422 (18)0.0224 (6)
H80.73180.4474−0.00980.027*
C90.9575 (5)0.38505 (16)−0.09363 (18)0.0232 (6)
H91.00210.4333−0.12570.028*
C101.0566 (5)0.30420 (16)−0.11623 (17)0.0202 (5)
C110.9849 (5)0.23290 (16)−0.06839 (17)0.0208 (5)
H111.04750.1789−0.08290.025*
C120.8202 (5)0.24182 (16)0.00099 (17)0.0213 (6)
H120.77360.19330.03240.026*
H3A0.508 (6)0.5891 (10)0.2593 (19)0.028 (8)*
H3B0.590 (5)0.5330 (19)0.1844 (9)0.027 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0515 (2)0.02764 (19)0.0375 (2)−0.00060 (13)0.01289 (16)−0.01098 (13)
O10.0335 (11)0.0214 (9)0.0253 (10)0.0049 (8)0.0168 (8)0.0036 (8)
N10.0210 (11)0.0234 (11)0.0186 (11)0.0013 (9)0.0061 (9)0.0025 (9)
N20.0192 (11)0.0245 (11)0.0212 (12)0.0001 (9)0.0060 (9)0.0012 (9)
N30.0292 (13)0.0188 (12)0.0321 (14)−0.0044 (10)0.0090 (11)−0.0002 (10)
C10.0241 (13)0.0191 (12)0.0207 (13)0.0038 (10)0.0024 (11)−0.0032 (10)
C20.0235 (14)0.0238 (13)0.0195 (13)0.0042 (11)0.0067 (11)0.0009 (11)
C30.0220 (13)0.0181 (12)0.0194 (13)0.0009 (10)0.0038 (10)−0.0005 (10)
C40.0211 (13)0.0219 (12)0.0171 (13)0.0029 (10)0.0040 (10)0.0014 (10)
C50.0205 (13)0.0185 (12)0.0211 (13)0.0032 (10)0.0003 (10)0.0015 (10)
C60.0187 (13)0.0227 (13)0.0216 (13)−0.0001 (10)0.0042 (10)0.0021 (11)
C70.0181 (12)0.0229 (13)0.0168 (13)−0.0019 (10)0.0030 (10)0.0001 (10)
C80.0235 (13)0.0191 (12)0.0253 (14)0.0027 (11)0.0063 (11)0.0031 (11)
C90.0269 (14)0.0180 (12)0.0259 (14)0.0019 (11)0.0093 (11)0.0058 (11)
C100.0196 (13)0.0223 (12)0.0193 (13)−0.0008 (10)0.0039 (10)0.0022 (10)
C110.0222 (13)0.0186 (12)0.0222 (13)−0.0003 (10)0.0054 (11)−0.0001 (10)
C120.0228 (13)0.0187 (12)0.0229 (14)−0.0013 (10)0.0059 (11)0.0025 (10)

Geometric parameters (Å, °)

Br1—C11.898 (2)C3—H30.9300
O1—C101.352 (3)C4—C51.426 (3)
O1—H10.8200C6—C71.455 (3)
N1—C21.331 (3)C6—H60.9300
N1—C31.346 (3)C7—C121.396 (3)
N2—C61.281 (3)C7—C81.400 (3)
N2—C41.409 (3)C8—C91.380 (4)
N3—C51.355 (3)C8—H80.9300
N3—H3A0.876 (10)C9—C101.406 (3)
N3—H3B0.889 (10)C9—H90.9300
C1—C21.374 (4)C10—C111.386 (3)
C1—C51.388 (4)C11—C121.387 (3)
C2—H20.9300C11—H110.9300
C3—C41.380 (3)C12—H120.9300
C10—O1—H1109.5N2—C6—C7122.8 (2)
C2—N1—C3116.9 (2)N2—C6—H6118.6
C6—N2—C4119.6 (2)C7—C6—H6118.6
C5—N3—H3A115 (2)C12—C7—C8117.8 (2)
C5—N3—H3B113.1 (19)C12—C7—C6119.7 (2)
H3A—N3—H3B117 (3)C8—C7—C6122.4 (2)
C2—C1—C5121.5 (2)C9—C8—C7120.9 (2)
C2—C1—Br1119.7 (2)C9—C8—H8119.5
C5—C1—Br1118.76 (19)C7—C8—H8119.5
N1—C2—C1122.9 (2)C8—C9—C10120.6 (2)
N1—C2—H2118.5C8—C9—H9119.7
C1—C2—H2118.5C10—C9—H9119.7
N1—C3—C4124.5 (2)O1—C10—C11123.1 (2)
N1—C3—H3117.8O1—C10—C9118.0 (2)
C4—C3—H3117.8C11—C10—C9118.8 (2)
C3—C4—N2126.0 (2)C10—C11—C12120.2 (2)
C3—C4—C5118.4 (2)C10—C11—H11119.9
N2—C4—C5115.5 (2)C12—C11—H11119.9
N3—C5—C1124.8 (2)C11—C12—C7121.6 (2)
N3—C5—C4119.4 (2)C11—C12—H12119.2
C1—C5—C4115.8 (2)C7—C12—H12119.2
C3—N1—C2—C1−0.2 (4)N2—C4—C5—C1176.8 (2)
C5—C1—C2—N10.7 (4)C4—N2—C6—C7−179.3 (2)
Br1—C1—C2—N1179.2 (2)N2—C6—C7—C12177.2 (2)
C2—N1—C3—C4−0.4 (4)N2—C6—C7—C8−0.1 (4)
N1—C3—C4—N2−175.8 (2)C12—C7—C8—C9−0.2 (4)
N1—C3—C4—C50.4 (4)C6—C7—C8—C9177.1 (2)
C6—N2—C4—C3−35.7 (4)C7—C8—C9—C10−0.5 (4)
C6—N2—C4—C5148.0 (2)C8—C9—C10—O1179.5 (2)
C2—C1—C5—N3−178.7 (2)C8—C9—C10—C110.8 (4)
Br1—C1—C5—N32.9 (3)O1—C10—C11—C12−179.1 (2)
C2—C1—C5—C4−0.7 (4)C9—C10—C11—C12−0.6 (4)
Br1—C1—C5—C4−179.13 (17)C10—C11—C12—C7−0.1 (4)
C3—C4—C5—N3178.2 (2)C8—C7—C12—C110.5 (4)
N2—C4—C5—N3−5.1 (3)C6—C7—C12—C11−176.9 (2)
C3—C4—C5—C10.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.882.688 (3)167
N3—H3A···Br10.877 (18)2.72 (3)3.125 (4)110.0 (19)
N3—H3A···O1ii0.877 (18)2.54 (2)2.967 (5)111.0 (19)
N3—H3B···N20.889 (16)2.28 (3)2.700 (5)109 (2)

Symmetry codes: (i) x+3/2, −y+1/2, z−1/2; (ii) −x+2, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2438).

References

  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Liu, X.-L., Liu, Y.-H., Shi, Y.-C. & Jian, P.-M. (2002). Chin. J. Org. Chem.22, 482-488.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography