PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m822.
Published online 2008 May 17. doi:  10.1107/S1600536808014517
PMCID: PMC2961381

(Z)-3-Ferrocenyl-2-phenyl­acrylonitrile

Abstract

In the structure of the title compound, [Fe(C5H5)(C14H10N)], the unsubstituted cyclo­penta­diene (Cp) ring is disordered over two positions, with site-occupancy factors 0.76 (2) and 0.24 (2). The dihedral angles between the substituted Cp ring and the major and the minor components of the disordered ring are 0.9 (5) and 6(2)°, repectively. The plane of the acrylonitrile unit makes dihedral angles of 6.1 (18) and 6.5 (4)° with the substituted Cp ring and the phenyl ring planes, respectively.

Related literature

For background to the chemistry of ferrocene, see: Long (1995 [triangle]); Roberto et al. (2000 [triangle]); Togni & Hayashi (1995 [triangle]). For the stuctures of ferrocene derivatives, see: Base et al. (2002 [triangle]); Hess et al. (1999 [triangle]). For bond distances in the acrylonitrile unit, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m822-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C14H10N)]
  • M r = 313.17
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m822-efi1.jpg
  • a = 6.8255 (14) Å
  • b = 11.795 (2) Å
  • c = 19.939 (4) Å
  • β = 106.786 (16)°
  • V = 1536.8 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.97 mm−1
  • T = 293 (2) K
  • 0.18 × 0.06 × 0.05 mm

Data collection

  • Rigaku, SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.892, T max = 1.00 (expected range = 0.850–0.953)
  • 15093 measured reflections
  • 3523 independent reflections
  • 2520 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.126
  • S = 1.07
  • 3523 reflections
  • 206 parameters
  • 30 restraints
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014517/sj2497sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014517/sj2497Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

The chemistry of ferrocene has received much attention because of its applications in many fields, such as in catalysis, organic or organometallic synthesis and materials (Togni, et al.(1995)). The use of ferrocene and its derivatives as non-linear optical(NLO) materials has also been reported (Long, 1995; Roberto et al., 2000). As part of our on going studies of the chemistry of ferrocene, we present here the structure of the title compound, (Z)-2-Phenyl-3-(ferrocenyl)acrylonitrile (I).

In I, the unsubstituted cyclopentadienyl (Cp) ring is disordered over two positions, the site occupancy factors are 0.76 (2) and 0.24 (2). The major disorder component is nearly parallel to the substituted Cp ring with a dihedral angle of 0.9 (5)° , and the rings are in an eclipsed configuration with the torsion angle C1-Cg1-Cg2-C10, -5.918 (3)°. The minor component of the disordered Cp ring is tilted slightly, making a dihedral of 6(2)° with C1···C5, and the rings are staggered, C1-Cg1-Cg2'-C9' 44.692 (4)° (Cg(1) denotes the centroid of the C1···C5 Cp ring, Cg(2) and Cg(2)' denote the centroids of the C6···C10 and C6'···C10' rings respectively). Fe-C distances to the substituted Cp ring vary from 2.030 (3) to 2.039 (3)Å, and are in the normal ranges (Hess et al., 1999; Base et al., 2002). Those to the unsubstituted Cp ring cover a wider range from 1.92 (3) to 2.084 (7) Å. The iron-ring centroid distances are Fe–Cg(1), 1.6378 (16) Å, Fe-Cg(2) 1.674 (3) Å and Fe–Cg(2)' 1.594 (13) Å. Within the acrylonitrile unit, bond angles and the C11═C12 double bond distance, 1.345 (3) Å) and C19[equivalent]N1 distances, 1.142 (4) Å, are normal (Allen et al. (1987). The plane of acrylonitrile unit makes dihedral angles of 6.13 ( 1.81 )° and 6.52 ( 0.39 )° with the C1···C5 ring and the C13···C18 phenyl ring plane, respectively.

Experimental

To a mixture of ferrocenecarboxaldehyde and 2-phenyletonitrile in CH2Cl2 was added pyrrolidine and the mixture was heated to reflux temperature for 3 h. The reaction was cooled to room temperature and solvent removed. The crude product was purified by column chromatography on silica gel using ethyl acetate-petroleum ether (v:v, 1:3) as eluent to collect the main yellow band. Red crystals suitable for X-ray analysis were obtained by slow evaporation of a saturated solution of ethyl acetate-petroleum ether (v:v,1:3). BAND YELLOW, CRYSTALS RED. IS THIS CORRECT??

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C). The unsubstituted Cp ring is disordered over two positions with site occupancy factors 0.76 (2) and 0.24 (2) respectively; corresponding C atoms were restrained to have the same anisotropic displacement parameters.

Figures

Fig. 1.
The structure of I showing the atom numbering scheme with displacement ellipsoids drawn at the 30% probability level. For clarity only atoms of the major disorder component of the unsubstituted cyclopentadiene ring are included.

Crystal data

[Fe(C5H5)(C14H10N)]F000 = 648
Mr = 313.17Dx = 1.354 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2947 reflections
a = 6.8255 (14) Åθ = 3.1–27.5º
b = 11.795 (2) ŵ = 0.97 mm1
c = 19.939 (4) ÅT = 293 (2) K
β = 106.786 (16)ºBlock, red
V = 1536.8 (5) Å30.18 × 0.06 × 0.05 mm
Z = 4

Data collection

Rigaku, SCXmini diffractometer3523 independent reflections
Radiation source: fine-focus sealed tube2520 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.050
Detector resolution: 13.6612 pixels mm-1θmax = 27.5º
T = 293(2) Kθmin = 3.1º
ω scansh = −8→8
Absorption correction: Multi-scan(CrystalClear; Rigaku, 2005)k = −15→15
Tmin = 0.892, Tmax = 1.00l = −25→25
15093 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.126  w = 1/[σ2(Fo2) + (0.0496P)2 + 0.4337P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3523 reflectionsΔρmax = 0.22 e Å3
206 parametersΔρmin = −0.40 e Å3
30 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Fe10.27058 (7)0.42653 (4)0.29905 (2)0.06096 (17)
N1−0.4172 (4)0.4888 (3)0.12481 (18)0.0911 (10)
C10.1205 (4)0.3903 (2)0.19717 (14)0.0537 (6)
C20.2972 (5)0.3198 (3)0.22231 (17)0.0701 (8)
H2A0.41350.31600.20290.084*
C30.2759 (7)0.2573 (3)0.2800 (2)0.0887 (11)
H3A0.37520.20280.30770.106*
C40.0914 (7)0.2867 (3)0.2915 (2)0.0922 (12)
H4A0.03940.25660.32890.111*
C5−0.0077 (5)0.3694 (3)0.24149 (17)0.0714 (8)
H5A−0.14000.40520.23770.086*
C60.2256 (9)0.5813 (5)0.3412 (3)0.0813 (15)0.764 (8)
H6A0.09440.62080.33260.098*0.764 (8)
C70.3062 (13)0.4980 (6)0.3956 (3)0.105 (2)0.764 (8)
H7A0.24600.47290.43220.125*0.764 (8)
C80.4978 (13)0.4657 (7)0.3864 (4)0.113 (2)0.764 (8)
H8A0.59230.41070.41580.136*0.764 (8)
C90.5340 (9)0.5257 (7)0.3301 (4)0.0948 (17)0.764 (8)
H9A0.65480.51890.31330.114*0.764 (8)
C100.3661 (11)0.5945 (6)0.3021 (4)0.0794 (17)0.764 (8)
H10A0.34730.64410.26130.095*0.764 (8)
C6'0.270 (3)0.5375 (19)0.3729 (13)0.0813 (15)0.236 (8)
H6'A0.15020.55590.38850.098*0.236 (8)
C7'0.421 (5)0.452 (2)0.4048 (12)0.105 (2)0.236 (8)
H7'A0.42500.40220.44450.125*0.236 (8)
C8'0.562 (4)0.457 (3)0.3629 (14)0.113 (2)0.236 (8)
H8'A0.67930.40610.36810.136*0.236 (8)
C9'0.488 (4)0.534 (3)0.3082 (11)0.0948 (17)0.236 (8)
H9'A0.55440.55090.27180.114*0.236 (8)
C10'0.315 (4)0.588 (3)0.3162 (16)0.0794 (17)0.236 (8)
H10B0.23950.64960.28720.095*0.236 (8)
C110.1004 (4)0.4723 (2)0.14174 (13)0.0480 (6)
H11A0.21970.48750.12970.058*
C12−0.0664 (4)0.5297 (2)0.10511 (13)0.0452 (6)
C13−0.0704 (4)0.6196 (2)0.05293 (13)0.0483 (6)
C14−0.2528 (5)0.6672 (3)0.01394 (16)0.0699 (8)
H14A−0.37520.64050.01970.084*
C15−0.2574 (6)0.7535 (3)−0.03341 (19)0.0869 (11)
H15A−0.38200.7844−0.05890.104*
C16−0.0805 (7)0.7933 (3)−0.04285 (19)0.0854 (11)
H16A−0.08380.8524−0.07400.103*
C170.1036 (6)0.7462 (3)−0.00626 (19)0.0788 (10)
H17A0.22440.7721−0.01360.095*
C180.1093 (5)0.6603 (3)0.04146 (16)0.0636 (7)
H18A0.23450.62930.06630.076*
C19−0.2607 (4)0.5059 (2)0.11687 (15)0.0588 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0733 (3)0.0567 (3)0.0496 (2)−0.0014 (2)0.0125 (2)0.00379 (19)
N10.0504 (16)0.114 (3)0.110 (3)−0.0086 (16)0.0258 (16)0.017 (2)
C10.0581 (16)0.0510 (14)0.0512 (15)−0.0058 (13)0.0147 (13)−0.0008 (12)
C20.083 (2)0.0592 (18)0.0641 (18)0.0146 (16)0.0151 (16)0.0034 (15)
C30.118 (3)0.0534 (19)0.082 (2)0.005 (2)0.009 (2)0.0107 (17)
C40.115 (3)0.081 (2)0.077 (2)−0.029 (2)0.023 (2)0.022 (2)
C50.0686 (19)0.082 (2)0.0657 (19)−0.0166 (17)0.0221 (16)0.0088 (17)
C60.121 (4)0.063 (3)0.060 (3)0.006 (3)0.026 (3)−0.005 (2)
C70.183 (7)0.075 (4)0.046 (3)0.018 (4)0.020 (4)0.001 (2)
C80.133 (6)0.107 (4)0.068 (6)0.021 (4)−0.022 (3)−0.021 (4)
C90.070 (4)0.107 (4)0.085 (5)−0.015 (3)−0.013 (3)−0.019 (4)
C100.089 (5)0.066 (2)0.082 (4)−0.019 (3)0.023 (3)−0.008 (2)
C6'0.121 (4)0.063 (3)0.060 (3)0.006 (3)0.026 (3)−0.005 (2)
C7'0.183 (7)0.075 (4)0.046 (3)0.018 (4)0.020 (4)0.001 (2)
C8'0.133 (6)0.107 (4)0.068 (6)0.021 (4)−0.022 (3)−0.021 (4)
C9'0.070 (4)0.107 (4)0.085 (5)−0.015 (3)−0.013 (3)−0.019 (4)
C10'0.089 (5)0.066 (2)0.082 (4)−0.019 (3)0.023 (3)−0.008 (2)
C110.0455 (14)0.0553 (14)0.0461 (14)0.0003 (12)0.0177 (11)−0.0021 (12)
C120.0406 (13)0.0525 (14)0.0433 (13)−0.0017 (11)0.0135 (11)−0.0073 (11)
C130.0522 (14)0.0519 (14)0.0394 (13)0.0001 (12)0.0108 (11)−0.0072 (11)
C140.0583 (17)0.088 (2)0.0609 (18)0.0090 (16)0.0133 (15)0.0151 (16)
C150.082 (2)0.102 (3)0.069 (2)0.023 (2)0.0105 (19)0.025 (2)
C160.114 (3)0.076 (2)0.065 (2)0.004 (2)0.025 (2)0.0182 (18)
C170.082 (2)0.078 (2)0.077 (2)−0.0134 (19)0.0245 (19)0.0116 (18)
C180.0584 (17)0.0674 (19)0.0616 (18)−0.0044 (15)0.0119 (14)0.0060 (15)
C190.0492 (16)0.0637 (17)0.0605 (17)−0.0033 (14)0.0112 (13)0.0009 (14)

Geometric parameters (Å, °)

Fe1—C9'1.92 (3)C8—H8A0.9800
Fe1—C10'1.94 (3)C9—C101.383 (7)
Fe1—C6'1.970 (19)C9—H9A0.9800
Fe1—C82.023 (7)C10—H10A0.9800
Fe1—C52.029 (3)C6'—C10'1.388 (17)
Fe1—C22.030 (3)C6'—C7'1.451 (18)
Fe1—C42.032 (4)C6'—H6'A0.9800
Fe1—C32.034 (4)C7'—C8'1.445 (19)
Fe1—C12.039 (3)C7'—H7'A0.9800
Fe1—C72.051 (5)C8'—C9'1.396 (18)
Fe1—C8'2.06 (3)C8'—H8'A0.9800
Fe1—C62.069 (5)C9'—C10'1.393 (17)
N1—C191.142 (4)C9'—H9'A0.9800
C1—C21.431 (4)C10'—H10B0.9800
C1—C51.433 (4)C11—C121.345 (3)
C1—C111.445 (4)C11—H11A0.9300
C2—C31.409 (5)C12—C191.439 (4)
C2—H2A0.9800C12—C131.480 (4)
C3—C41.387 (5)C13—C141.382 (4)
C3—H3A0.9800C13—C181.396 (4)
C4—C51.419 (5)C14—C151.383 (5)
C4—H4A0.9800C14—H14A0.9300
C5—H5A0.9800C15—C161.359 (5)
C6—C101.408 (8)C15—H15A0.9300
C6—C71.449 (7)C16—C171.375 (5)
C6—H6A0.9800C16—H16A0.9300
C7—C81.424 (10)C17—C181.382 (4)
C7—H7A0.9800C17—H17A0.9300
C8—C91.408 (10)C18—H18A0.9300
C9'—Fe1—C10'42.3 (7)C4—C5—Fe169.7 (2)
C9'—Fe1—C6'70.2 (8)C1—C5—Fe169.73 (17)
C10'—Fe1—C6'41.5 (6)C4—C5—H5A126.3
C9'—Fe1—C852.3 (7)C1—C5—H5A126.3
C10'—Fe1—C865.3 (9)Fe1—C5—H5A126.3
C6'—Fe1—C851.1 (7)C10—C6—C7108.5 (5)
C9'—Fe1—C5147.7 (7)C10—C6—Fe170.6 (4)
C10'—Fe1—C5119.9 (8)C7—C6—Fe168.8 (3)
C6'—Fe1—C5116.1 (6)C10—C6—H6A125.7
C8—Fe1—C5157.2 (3)C7—C6—H6A125.7
C9'—Fe1—C2104.1 (8)Fe1—C6—H6A125.7
C10'—Fe1—C2134.2 (8)C8—C7—C6104.4 (6)
C6'—Fe1—C2174.3 (6)C8—C7—Fe168.5 (3)
C8—Fe1—C2125.3 (3)C6—C7—Fe170.1 (3)
C5—Fe1—C268.93 (14)C8—C7—H7A127.8
C9'—Fe1—C4166.9 (9)C6—C7—H7A127.8
C10'—Fe1—C4150.3 (8)Fe1—C7—H7A127.8
C6'—Fe1—C4117.6 (7)C9—C8—C7110.3 (7)
C8—Fe1—C4123.0 (3)C9—C8—Fe172.3 (4)
C5—Fe1—C440.89 (14)C7—C8—Fe170.6 (4)
C2—Fe1—C467.89 (17)C9—C8—H8A124.8
C9'—Fe1—C3127.5 (9)C7—C8—H8A124.8
C10'—Fe1—C3169.8 (8)Fe1—C8—H8A124.8
C6'—Fe1—C3142.7 (8)C10—C9—C8107.5 (6)
C8—Fe1—C3109.5 (3)C10—C9—Fe170.5 (4)
C5—Fe1—C368.47 (16)C8—C9—Fe167.7 (4)
C2—Fe1—C340.58 (14)C10—C9—H9A126.2
C4—Fe1—C339.89 (15)C8—C9—H9A126.2
C9'—Fe1—C1112.6 (6)Fe1—C9—H9A126.2
C10'—Fe1—C1112.9 (8)C9—C10—C6109.2 (5)
C6'—Fe1—C1140.8 (8)C9—C10—Fe170.7 (4)
C8—Fe1—C1161.0 (3)C6—C10—Fe169.7 (3)
C5—Fe1—C141.24 (12)C9—C10—H10A125.4
C2—Fe1—C141.19 (12)C6—C10—H10A125.4
C4—Fe1—C168.75 (13)Fe1—C10—H10A125.4
C3—Fe1—C168.87 (13)C10'—C6'—C7'110.9 (15)
C9'—Fe1—C776.2 (7)C10'—C6'—Fe168.1 (16)
C10'—Fe1—C757.4 (8)C7'—C6'—Fe173.2 (14)
C6'—Fe1—C718.4 (6)C10'—C6'—H6'A124.6
C8—Fe1—C740.9 (3)C7'—C6'—H6'A124.6
C5—Fe1—C7120.3 (3)Fe1—C6'—H6'A124.6
C2—Fe1—C7161.9 (3)C8'—C7'—C6'103.2 (14)
C4—Fe1—C7108.0 (2)C8'—C7'—Fe168.6 (16)
C3—Fe1—C7125.1 (2)C6'—C7'—Fe164.9 (13)
C1—Fe1—C7155.6 (3)C8'—C7'—H7'A128.4
C9'—Fe1—C8'40.9 (6)C6'—C7'—H7'A128.4
C10'—Fe1—C8'69.4 (9)Fe1—C7'—H7'A128.4
C6'—Fe1—C8'68.5 (8)C9'—C8'—C7'109.1 (16)
C8—Fe1—C8'20.8 (6)C9'—C8'—Fe164.2 (15)
C5—Fe1—C8'170.4 (8)C7'—C8'—Fe170.5 (16)
C2—Fe1—C8'107.0 (7)C9'—C8'—H8'A125.2
C4—Fe1—C8'129.7 (8)C7'—C8'—H8'A125.2
C3—Fe1—C8'102.6 (8)Fe1—C8'—H8'A125.2
C1—Fe1—C8'140.3 (7)C10'—C9'—C8'109.5 (16)
C7—Fe1—C8'61.1 (7)C10'—C9'—Fe169.7 (17)
C9'—Fe1—C665.3 (9)C8'—C9'—Fe174.9 (16)
C10'—Fe1—C625.6 (7)C10'—C9'—H9'A125.2
C6'—Fe1—C622.8 (6)C8'—C9'—H9'A125.2
C8—Fe1—C667.4 (3)Fe1—C9'—H9'A125.2
C5—Fe1—C6107.3 (2)C6'—C10'—C9'107.1 (15)
C2—Fe1—C6155.4 (2)C6'—C10'—Fe170.3 (14)
C4—Fe1—C6126.1 (2)C9'—C10'—Fe168.0 (17)
C3—Fe1—C6162.6 (2)C6'—C10'—H10B126.5
C1—Fe1—C6119.9 (2)C9'—C10'—H10B126.5
C7—Fe1—C641.2 (2)Fe1—C10'—H10B126.5
C8'—Fe1—C680.0 (7)C12—C11—C1129.1 (2)
C2—C1—C5106.7 (3)C12—C11—H11A115.4
C2—C1—C11122.8 (3)C1—C11—H11A115.4
C5—C1—C11130.3 (3)C11—C12—C19119.3 (2)
C2—C1—Fe169.07 (17)C11—C12—C13125.7 (2)
C5—C1—Fe169.03 (17)C19—C12—C13115.0 (2)
C11—C1—Fe1122.09 (19)C14—C13—C18117.4 (3)
C3—C2—C1108.4 (3)C14—C13—C12121.1 (2)
C3—C2—Fe169.9 (2)C18—C13—C12121.5 (2)
C1—C2—Fe169.74 (17)C13—C14—C15121.5 (3)
C3—C2—H2A125.8C13—C14—H14A119.3
C1—C2—H2A125.8C15—C14—H14A119.3
Fe1—C2—H2A125.8C16—C15—C14120.2 (3)
C4—C3—C2108.4 (3)C16—C15—H15A119.9
C4—C3—Fe170.0 (2)C14—C15—H15A119.9
C2—C3—Fe169.55 (19)C15—C16—C17120.0 (3)
C4—C3—H3A125.8C15—C16—H16A120.0
C2—C3—H3A125.8C17—C16—H16A120.0
Fe1—C3—H3A125.8C16—C17—C18120.1 (3)
C3—C4—C5109.1 (3)C16—C17—H17A120.0
C3—C4—Fe170.1 (2)C18—C17—H17A120.0
C5—C4—Fe169.45 (19)C17—C18—C13120.9 (3)
C3—C4—H4A125.4C17—C18—H18A119.6
C5—C4—H4A125.4C13—C18—H18A119.6
Fe1—C4—H4A125.4N1—C19—C12178.3 (3)
C4—C5—C1107.4 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2497).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–S19.
  • Base, T., Cisarova, I. & Stepnicka, P. (2002). Inorg. Chem. Commun 5, 46–50.
  • Hess, A., Brosch, O., Weyhermuller, T. & Metzler-Nolte, N. (1999). J. Organomet. Chem 589, 75–84.
  • Long, N. J. (1995). Angew. Chem. Int. Ed. Engl 34, 21–75.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Roberto, D., Ugo, R., Cariati, S. B. E. & Cariati, F. (2000). Organometallics, 19, 1775–1788.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Togni, A. & Hayashi, T. (1995). Editors. Ferrocenes Weinheim: VCH.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography