PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1027.
Published online 2008 May 10. doi:  10.1107/S1600536808013226
PMCID: PMC2961378

3,9-Dibromo-6,7-dihydro-5H-dibenzo[c,e]thiepine

Abstract

In the title mol­ecule, C14H10Br2S, the two benzene rings form a dihedral angle of 48.35 (14)°. The seven-membered ring adopts a boat conformation. In the crystal structure, mol­ecules are related by translation along the b axis and exhibit C—H(...)π inter­actions.

Related literature

For the synthesis of dibenzo[c,e]thiepine derivatives, see: Truce et al. (1956 [triangle]). For the chiroptical properties of dibenzo[c,e]thiepine derivatives, see: Tomascovic et al. (2000 [triangle]), respectively.

An external file that holds a picture, illustration, etc.
Object name is e-64-o1027-scheme1.jpg

Experimental

Crystal data

  • C14H10Br2S
  • M r = 370.10
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1027-efi1.jpg
  • a = 8.6629 (12) Å
  • b = 4.7219 (5) Å
  • c = 30.867 (3) Å
  • β = 93.720 (5)°
  • V = 1260.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 6.57 mm−1
  • T = 291 (2) K
  • 0.16 × 0.14 × 0.13 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.419, T max = 0.482 (expected range = 0.370–0.426)
  • 4858 measured reflections
  • 2850 independent reflections
  • 1840 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.078
  • S = 1.01
  • 2850 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.79 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808013226/cv2397sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013226/cv2397Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the financial support from the National Science Foundation of China (grant Nos. 20125421, 90101026, 50303007 and 60207003) and the Ministry of Science and Technology of China (grant Nos. 2002cb6134003 and 2003cb3147032).

supplementary crystallographic information

Comment

The dibenzo[c,e]thiepine derivatives (Truce et al. 1956) exhibit remarkable chiroptical properties (Tomascovic et al. 2000). Introducing Br on benzene ring of dibenzo[c,e]thiepine can expand the field of their application, such as photoluminescence, electro-luminescence devices and nonlinear potics etc. Herein we present the crysal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The molecule exhibits twisted conformation with a dihedral angle of 48.35 (14)° between two benzene rings, while central 7-member ring has a boat conformation. The crystal structure of (I) is stabilized by C—H···π interactions (Table 1).

Experimental

The title compound has been prepared in a four-step reaction. Step 1: the 2,7-dibromophenanthrenequinone was obtained by direct bromination of phenanthrenequinone in the presence of n-bromosuccinimide in H2SO4. Step 2: the oxidation of 2,7-dibromophenanthrenequinone in the presence of pure oxygen and Cu(I)Cl gave 4,4-dibromodiphenic acid. Step 3: the reduction of 4,4-dibromodiphenic acid using NaBH4 gave 4,4'-dibromo-2,2'-bis-(hydroxymethyl)-bipheny. Step 4: the reacton of 4,4'-dibromo-2,2'-bis-(hydroxymethyl)-biphenyl and sodium sulfate nonahydrate gave the title compound. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a ethanol solution.

Refinement

H atoms were geometrically positioned (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing the atomic numbering and 40% probability displacement ellipsoids.

Crystal data

C14H10Br2SF000 = 720
Mr = 370.10Dx = 1.951 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3351 reflections
a = 8.6629 (12) Åθ = 5.0–54.9º
b = 4.7219 (5) ŵ = 6.57 mm1
c = 30.867 (3) ÅT = 291 (2) K
β = 93.720 (5)ºBlock, colourless
V = 1260.0 (3) Å30.16 × 0.14 × 0.13 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer2850 independent reflections
Radiation source: fine-focus sealed tube1840 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.045
T = 291(2) Kθmax = 27.5º
ω scansθmin = 2.6º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −11→11
Tmin = 0.420, Tmax = 0.482k = −6→6
4858 measured reflectionsl = −40→40

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.078  w = 1/[σ2(Fo2) + (0.0319P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2850 reflectionsΔρmax = 0.79 e Å3
154 parametersΔρmin = −0.54 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.41895 (5)0.61945 (10)0.055440 (15)0.03375 (14)
Br21.35085 (6)1.76323 (11)0.226693 (14)0.03785 (14)
S31.09057 (13)1.1401 (3)0.04915 (4)0.0327 (3)
C121.2114 (5)1.4013 (9)0.16192 (12)0.0249 (9)
H12A1.31311.35830.15640.030*
C10.5734 (5)0.8581 (9)0.08152 (14)0.0275 (10)
C50.6896 (5)1.0665 (9)0.14581 (13)0.0276 (10)
H5A0.69051.09570.17560.033*
C111.0890 (4)1.2718 (9)0.13757 (12)0.0229 (9)
C90.9122 (5)1.5295 (9)0.17965 (12)0.0264 (10)
H9A0.81151.57240.18610.032*
C20.6805 (4)0.9909 (9)0.05755 (13)0.0267 (9)
H2A0.67590.96700.02760.032*
C30.7955 (5)1.1598 (9)0.07744 (13)0.0258 (10)
C71.1815 (5)1.5920 (9)0.19398 (13)0.0278 (10)
C100.9356 (4)1.3383 (9)0.14641 (12)0.0217 (9)
C81.0326 (5)1.6569 (9)0.20317 (13)0.0318 (11)
H8A1.01371.78540.22500.038*
C60.5753 (5)0.9018 (9)0.12604 (13)0.0284 (10)
H6A0.50000.82040.14220.034*
C141.1210 (5)1.0451 (9)0.10551 (12)0.0270 (10)
H14A1.05590.88350.11100.032*
H14B1.22770.98500.11080.032*
C40.8037 (5)1.1905 (9)0.12287 (13)0.0267 (10)
C130.9066 (4)1.3159 (9)0.05066 (12)0.0264 (10)
H13A0.92291.50460.06250.032*
H13B0.86111.33550.02130.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0284 (2)0.0346 (3)0.0382 (3)0.0011 (2)0.00183 (18)−0.0060 (2)
Br20.0429 (3)0.0450 (3)0.0250 (2)−0.0075 (2)−0.00297 (19)−0.0022 (2)
S30.0311 (6)0.0410 (7)0.0266 (5)0.0019 (5)0.0057 (5)−0.0010 (5)
C120.027 (2)0.023 (2)0.024 (2)0.001 (2)0.0027 (17)0.006 (2)
C10.025 (2)0.025 (2)0.032 (2)0.009 (2)0.0002 (18)−0.004 (2)
C50.030 (2)0.033 (3)0.021 (2)0.005 (2)0.0075 (17)−0.0017 (19)
C110.027 (2)0.021 (2)0.0209 (19)0.0035 (19)0.0031 (17)0.0046 (19)
C90.029 (2)0.026 (2)0.025 (2)0.0064 (19)0.0061 (18)0.0033 (19)
C20.026 (2)0.030 (2)0.024 (2)0.006 (2)0.0037 (18)0.002 (2)
C30.028 (2)0.024 (2)0.026 (2)0.0075 (19)0.0071 (18)0.0032 (19)
C70.033 (2)0.028 (2)0.022 (2)−0.004 (2)−0.0004 (18)0.005 (2)
C100.023 (2)0.022 (2)0.020 (2)0.0029 (18)0.0016 (16)0.0039 (17)
C80.048 (3)0.025 (3)0.023 (2)0.000 (2)0.009 (2)0.0008 (19)
C60.027 (2)0.030 (2)0.029 (2)−0.001 (2)0.0065 (18)0.005 (2)
C140.024 (2)0.025 (3)0.032 (2)0.0041 (18)0.0034 (18)−0.0042 (19)
C40.026 (2)0.029 (3)0.025 (2)0.0058 (19)0.0044 (17)0.0021 (19)
C130.031 (2)0.030 (3)0.0186 (19)0.0030 (19)0.0047 (17)0.0019 (18)

Geometric parameters (Å, °)

Br1—C11.889 (4)C9—C101.392 (5)
Br2—C71.906 (4)C9—H9A0.9300
S3—C141.800 (4)C2—C31.388 (6)
S3—C131.800 (4)C2—H2A0.9300
C12—C71.375 (6)C3—C41.407 (5)
C12—C111.400 (5)C3—C131.502 (5)
C12—H12A0.9300C7—C81.373 (6)
C1—C21.375 (6)C10—C41.488 (6)
C1—C61.389 (6)C8—H8A0.9300
C5—C61.371 (6)C6—H6A0.9300
C5—C41.382 (6)C14—H14A0.9700
C5—H5A0.9300C14—H14B0.9700
C11—C101.409 (5)C13—H13A0.9700
C11—C141.496 (6)C13—H13B0.9700
C9—C81.370 (6)
C14—S3—C1399.46 (18)C9—C10—C11118.1 (4)
C7—C12—C11120.1 (4)C9—C10—C4121.4 (4)
C7—C12—H12A120.0C11—C10—C4120.4 (4)
C11—C12—H12A120.0C9—C8—C7119.0 (4)
C2—C1—C6120.0 (4)C9—C8—H8A120.5
C2—C1—Br1121.8 (3)C7—C8—H8A120.5
C6—C1—Br1118.2 (3)C5—C6—C1119.1 (4)
C6—C5—C4122.2 (4)C5—C6—H6A120.4
C6—C5—H5A118.9C1—C6—H6A120.4
C4—C5—H5A118.9C11—C14—S3116.1 (3)
C12—C11—C10119.3 (4)C11—C14—H14A108.3
C12—C11—C14120.1 (4)S3—C14—H14A108.3
C10—C11—C14120.3 (4)C11—C14—H14B108.3
C8—C9—C10122.2 (4)S3—C14—H14B108.3
C8—C9—H9A118.9H14A—C14—H14B107.4
C10—C9—H9A118.9C5—C4—C3118.4 (4)
C1—C2—C3120.9 (4)C5—C4—C10120.0 (4)
C1—C2—H2A119.5C3—C4—C10121.5 (4)
C3—C2—H2A119.5C3—C13—S3112.8 (3)
C2—C3—C4119.2 (4)C3—C13—H13A109.0
C2—C3—C13120.4 (4)S3—C13—H13A109.0
C4—C3—C13120.4 (4)C3—C13—H13B109.0
C8—C7—C12121.2 (4)S3—C13—H13B109.0
C8—C7—Br2119.8 (3)H13A—C13—H13B107.8
C12—C7—Br2119.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14a···Cgi0.972.693.446 (9)136

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2397).

References

  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC and Rigaku (2002). CrystalStructure MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493.
  • Truce, W. E. & Emrick, D. D. (1956). J. Am. Chem. Soc.78, 6130–6137.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography