PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1051.
Published online 2008 May 10. doi:  10.1107/S160053680800891X
PMCID: PMC2961375

(Z)-Methyl 3-(4-ethoxy­anilino)but-2-enoate

Abstract

The title compound, C13H17NO3, was synthesized from methyl 3-oxobutanoate and 4-ethoxy­benzenamine using a catalytic amount of InBr3 under solvent-free conditions. The 3-amino­but-2-enoic acid methyl ester group is planar and forms a dihedral angle of 83.4 (1)° with the benzene ring. The eth­oxy group is slightly twisted away from the benzene ring [dihedral angle = 13.8 (1)°]. An intra­molecular N—H(...)O hydrogen bond generating an S(6) ring is observed. Mol­ecules are linked into a chain along the b axis by inter­molecular C—H(...)O hydrogen bonding.

Related literature

For general background on β-enamino esters, see: Bartoli et al. (1994 [triangle]); Cimarelli & Palmieri (1996 [triangle]); Cimarelli et al. (1994 [triangle]); Elassar & El-Khair (2003 [triangle]); Greenhill (1977 [triangle]); Lubell et al. (1991 [triangle]); Michael et al. (1999 [triangle]); Paola et al. (2000 [triangle]); Rybarczyk-Pirek & Grabowski (2002 [triangle]); Yunus et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1051-scheme1.jpg

Experimental

Crystal data

  • C13H17NO3
  • M r = 235.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1051-efi1.jpg
  • a = 12.421 (2) Å
  • b = 6.3372 (13) Å
  • c = 16.569 (3) Å
  • β = 96.519 (3)°
  • V = 1295.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 294 (2) K
  • 0.30 × 0.26 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.942, T max = 0.990
  • 6917 measured reflections
  • 2628 independent reflections
  • 1629 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.136
  • S = 1.00
  • 2628 reflections
  • 158 parameters
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.11 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680800891X/ci2569sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680800891X/ci2569Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Southern Yangtze University.

supplementary crystallographic information

Comment

β-Enamino esters are useful precursors for the preparation of biologically active compounds such as β-enamino acids, γ-enamino alcohols or β-enamino esters (Lubell et al., 1991; Bartoli et al., 1994; Cimarelli et al., 1994; Cimarelli & Palmieri, 1996). Therefore, many synthetic methods have been developed for the preparation of these compounds (Greenhill, 1977; Elassar et al., 2003; Michael et al., 1999). As part of our program on developing new environmental friendly methodologies for the preparation of β-enamino compounds, we have synthesized the title compound (Fig.1). We report here the crystal structure of it.

In the title molecule, the 3-amino-but-2-enoic acid methyl ester group is planar (r.m.s. deviation 0.045 Å) and it forms a dihedral angle of 83.4 (1)° with the benzene ring. The ethoxy group is slightly twisted away from the benzene ring [dihedral angle 13.8 (1)°]. An intramolecular N1—H1···O2 hydrogen bond generating an S(6) ring is observed. The N1—C9 bond length [1.341 (2) Å] is shorter than the N1—C1 [1.435 (2) Å] bond length, indicating electron delocalization.

The molecules are linked into a chain along the b axis by intermolecular C—H···O hydrogen bonds (Fig. 2).

Experimental

A mixture of the methyl-3-oxobutanoate (5 mmol), 4-ethoxybenzenamine (5 mmol) and InBr3 (0.05 mmol) was stirred at room temperature for 1 h. After completion of the reaction, the reaction mixture was diluted with H2O (10 ml) and extracted with EtOAc (210 ml). The combined organic layers were dried, concentrated, purified by column chromatography on SiO2 with ethyl acetate-cyclohexane (2:8). Single crystals suitable for X-ray diffraction study were obtained from EtOAc-cyclohexane (1:10 v/v) by slow evaporation at room temperature.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H = 0.86 Å, C—H = 0.93–0.97 Å, and Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(C,N). Each methyl group was allowed to rotate freely about its C—C bond.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
Fig. 2.
A view of the molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

C13H17NO3F000 = 504
Mr = 235.28Dx = 1.206 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2289 reflections
a = 12.421 (2) Åθ = 2.5–24.9º
b = 6.3372 (13) ŵ = 0.09 mm1
c = 16.569 (3) ÅT = 294 (2) K
β = 96.519 (3)ºBlock, yellow
V = 1295.7 (4) Å30.30 × 0.26 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2628 independent reflections
Radiation source: fine-focus sealed tube1629 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
T = 294(2) Kθmax = 26.3º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −11→15
Tmin = 0.942, Tmax = 0.990k = −7→6
6917 measured reflectionsl = −20→20

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.042  w = 1/[σ2(Fo2) + (0.0697P)2 + 0.1223P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.13 e Å3
2628 reflectionsΔρmin = −0.11 e Å3
158 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.106 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.11751 (9)1.2475 (2)1.03170 (8)0.0714 (4)
O20.55147 (10)0.4131 (2)0.90568 (7)0.0697 (4)
O30.60606 (12)0.2866 (2)0.79053 (8)0.0872 (5)
N10.39962 (11)0.7279 (2)0.88382 (9)0.0654 (4)
H10.44030.65280.91810.078*
C10.32646 (13)0.8715 (3)0.91658 (9)0.0578 (4)
C20.21953 (14)0.8158 (3)0.92064 (10)0.0660 (5)
H20.19340.68910.89790.079*
C30.15124 (13)0.9455 (3)0.95793 (11)0.0642 (5)
H30.07940.90670.96000.077*
C40.18978 (13)1.1339 (3)0.99243 (10)0.0562 (4)
C50.29584 (13)1.1948 (3)0.98654 (11)0.0621 (5)
H50.32161.32321.00790.074*
C60.36297 (13)1.0624 (3)0.94847 (10)0.0622 (5)
H60.43411.10320.94440.075*
C70.15753 (16)1.4153 (3)1.08352 (12)0.0747 (6)
H7A0.19151.52121.05260.090*
H7B0.21131.36241.12570.090*
C80.06476 (18)1.5100 (4)1.12071 (12)0.0860 (6)
H8A0.01291.56541.07870.129*
H8B0.09081.62181.15690.129*
H8C0.03091.40361.15050.129*
C90.41069 (14)0.6995 (3)0.80498 (10)0.0606 (5)
C100.34385 (18)0.8388 (4)0.74539 (12)0.0856 (6)
H10A0.26870.82500.75300.128*
H10B0.35420.79760.69110.128*
H10C0.36600.98300.75410.128*
C110.48003 (16)0.5549 (3)0.77912 (11)0.0682 (5)
H110.48470.54500.72360.082*
C120.54568 (14)0.4182 (3)0.83178 (11)0.0603 (5)
C130.66598 (19)0.1247 (4)0.83608 (13)0.0913 (7)
H13A0.70340.18420.88470.137*
H13B0.71760.06410.80380.137*
H13C0.61710.01700.85030.137*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0558 (7)0.0803 (9)0.0782 (8)0.0017 (6)0.0075 (6)−0.0156 (7)
O20.0708 (8)0.0769 (9)0.0602 (8)0.0030 (6)0.0030 (6)−0.0031 (6)
O30.1112 (11)0.0823 (10)0.0680 (8)0.0315 (8)0.0100 (7)−0.0054 (7)
N10.0600 (9)0.0757 (10)0.0604 (9)0.0114 (7)0.0069 (7)0.0021 (7)
C10.0526 (10)0.0670 (11)0.0537 (9)−0.0002 (8)0.0050 (7)0.0037 (8)
C20.0572 (11)0.0703 (12)0.0701 (11)−0.0124 (9)0.0062 (8)−0.0107 (9)
C30.0465 (9)0.0752 (13)0.0709 (11)−0.0097 (8)0.0067 (8)−0.0097 (9)
C40.0497 (9)0.0632 (10)0.0546 (9)0.0017 (8)0.0015 (7)0.0024 (8)
C50.0540 (10)0.0603 (11)0.0710 (11)−0.0080 (8)0.0030 (8)−0.0018 (9)
C60.0481 (10)0.0686 (12)0.0698 (11)−0.0075 (8)0.0063 (8)0.0057 (9)
C70.0787 (13)0.0724 (13)0.0724 (12)0.0010 (10)0.0071 (9)−0.0102 (10)
C80.0949 (15)0.0886 (15)0.0745 (12)0.0188 (12)0.0097 (11)−0.0090 (11)
C90.0589 (10)0.0621 (11)0.0613 (10)−0.0050 (8)0.0087 (8)0.0037 (8)
C100.0966 (15)0.0921 (15)0.0697 (12)0.0227 (12)0.0170 (11)0.0152 (11)
C110.0787 (13)0.0715 (12)0.0552 (10)0.0040 (10)0.0118 (9)0.0015 (9)
C120.0607 (11)0.0566 (10)0.0642 (11)−0.0066 (8)0.0088 (8)−0.0060 (9)
C130.1021 (16)0.0811 (15)0.0877 (15)0.0275 (12)−0.0022 (12)−0.0071 (12)

Geometric parameters (Å, °)

O1—C41.371 (2)C6—H60.93
O1—C71.420 (2)C7—C81.493 (3)
O2—C121.2187 (19)C7—H7A0.97
O3—C121.357 (2)C7—H7B0.97
O3—C131.431 (2)C8—H8A0.96
N1—C91.341 (2)C8—H8B0.96
N1—C11.435 (2)C8—H8C0.96
N1—H10.86C9—C111.360 (3)
C1—C61.376 (2)C9—C101.503 (3)
C1—C21.383 (2)C10—H10A0.96
C2—C31.377 (3)C10—H10B0.96
C2—H20.93C10—H10C0.96
C3—C41.385 (2)C11—C121.420 (3)
C3—H30.93C11—H110.93
C4—C51.387 (2)C13—H13A0.96
C5—C61.384 (2)C13—H13B0.96
C5—H50.93C13—H13C0.96
C4—O1—C7118.48 (14)H7A—C7—H7B108.4
C12—O3—C13117.32 (15)C7—C8—H8A109.5
C9—N1—C1126.37 (15)C7—C8—H8B109.5
C9—N1—H1116.8H8A—C8—H8B109.5
C1—N1—H1116.8C7—C8—H8C109.5
C6—C1—C2118.81 (16)H8A—C8—H8C109.5
C6—C1—N1120.47 (15)H8B—C8—H8C109.5
C2—C1—N1120.63 (16)N1—C9—C11122.43 (16)
C3—C2—C1120.90 (17)N1—C9—C10116.80 (16)
C3—C2—H2119.6C11—C9—C10120.76 (16)
C1—C2—H2119.6C9—C10—H10A109.5
C2—C3—C4119.86 (16)C9—C10—H10B109.5
C2—C3—H3120.1H10A—C10—H10B109.5
C4—C3—H3120.1C9—C10—H10C109.5
O1—C4—C3115.74 (15)H10A—C10—H10C109.5
O1—C4—C5124.43 (16)H10B—C10—H10C109.5
C3—C4—C5119.83 (16)C9—C11—C12123.90 (16)
C6—C5—C4119.30 (17)C9—C11—H11118.0
C6—C5—H5120.4C12—C11—H11118.0
C4—C5—H5120.4O2—C12—O3121.13 (16)
C1—C6—C5121.23 (16)O2—C12—C11126.71 (16)
C1—C6—H6119.4O3—C12—C11112.16 (16)
C5—C6—H6119.4O3—C13—H13A109.5
O1—C7—C8108.47 (16)O3—C13—H13B109.5
O1—C7—H7A110.0H13A—C13—H13B109.5
C8—C7—H7A110.0O3—C13—H13C109.5
O1—C7—H7B110.0H13A—C13—H13C109.5
C8—C7—H7B110.0H13B—C13—H13C109.5
C9—N1—C1—C6−100.4 (2)N1—C1—C6—C5−174.42 (15)
C9—N1—C1—C283.0 (2)C4—C5—C6—C1−0.1 (3)
C6—C1—C2—C3−1.9 (3)C4—O1—C7—C8−178.42 (16)
N1—C1—C2—C3174.69 (16)C1—N1—C9—C11−177.96 (17)
C1—C2—C3—C4−0.4 (3)C1—N1—C9—C103.2 (3)
C7—O1—C4—C3165.99 (15)N1—C9—C11—C121.1 (3)
C7—O1—C4—C5−13.3 (2)C10—C9—C11—C12179.97 (18)
C2—C3—C4—O1−176.87 (16)C13—O3—C12—O27.7 (3)
C2—C3—C4—C52.5 (3)C13—O3—C12—C11−172.85 (18)
O1—C4—C5—C6177.09 (16)C9—C11—C12—O2−1.7 (3)
C3—C4—C5—C6−2.2 (2)C9—C11—C12—O3178.90 (18)
C2—C1—C6—C52.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.862.082.741 (2)133
C6—H6···O2i0.932.573.362 (3)143

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2569).

References

  • Bartoli, G., Cimarelli, C., Marcantoni, E., Palmieri, G. & Petrini, M. (1994). J. Org. Chem.59, 5328–5335.
  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin,USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cimarelli, C. & Palmieri, G. (1996). J. Org. Chem.61, 5557–5563.
  • Cimarelli, C., Palmieri, G. & Bartoli, G. (1994). Tetrahedron Asymmetry, 5, 1455–1458.
  • Elassar, A.-Z. A. & El-Khair, A. A. (2003). Tetrahedron, 59, 8463–8480.
  • Greenhill, J. V. (1977). Chem. Soc. Rev.6, 277–294.
  • Lubell, W. D., Kitamura, M. & Noyori, R. (1991). Tetrahedron Asymmetry, 2, 543–554.
  • Michael, J. P., Koning, C. B. De., Gravestock, D. & Hosken, G. D. (1999). Pure Appl. Chem.71, 979–988.
  • Paola, G., Valerio, B. & Valeria, F. (2000). J. Am. Chem. Soc.122, 10405–10417.
  • Rybarczyk-Pirek, A. J. & Grabowski, S. (2002). J. Phys. Chem. A, 106, 11956–11962.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography