PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1140.
Published online 2008 May 21. doi:  10.1107/S1600536808014840
PMCID: PMC2961368

Bis(3-amino­phen­yl) sulfone acetonitrile solvate

Abstract

In the sulfone mol­ecule of the title compound, C12H12N2O2S·C2H3N, the two benzene rings are oriented at a dihedral angle of 80.69 (3)°. Weak intra­molecular C—H(...)O hydrogen bonds result in the formation of two five-membered rings, which both have envelope conformations. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Yang et al. (2003 [triangle]); Rudyk et al. (2003 [triangle]); Ayyangar et al. (1981 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1140-scheme1.jpg

Experimental

Crystal data

  • C12H12N2O2S·C2H3N
  • M r = 289.35
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1140-efi1.jpg
  • a = 9.1690 (18) Å
  • b = 15.559 (3) Å
  • c = 20.960 (4) Å
  • V = 2990.2 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 294 (2) K
  • 0.40 × 0.30 × 0.30 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.917, T max = 0.937
  • 2674 measured reflections
  • 2674 independent reflections
  • 1644 reflections with I > 2σ(I)
  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.135
  • S = 1.03
  • 2674 reflections
  • 175 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014840/hk2464sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014840/hk2464Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound, (I), is used for preparing diimide-dicarboxylic acid (Yang et al., 2003) and corresponding truncated dyes analogs of Congo red (Rudyk et al., 2003). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The asymmetric unit also contains one acetonitrile solvent molecule. Rings A (C1-C6) and B (C7-C12) are, of course, planar and they are oriented at a dihedral angle of A/B = 80.69 (3)°. The weak intramolecular C-H···O hydrogen bonds (Table 1) result in the formation of two five-membered rings C (S/C5/C6/H6A) and D (S/C8/C9/H8A). They adopt envelope conformations, with O1 and O2 atoms displaced by 0.251 (3) and -0.529 (3) Å from the planes of the other ring atoms, respectively.

In the crystal structure, intermolecular N1-H1B···O1i [H1B···O1 2.32 Å, N1···O1 3.147 (3) Å and N1-H1B···O1 161.0°] and N2-H2B···O2ii [H2B···O2 2.28 Å, N2···O2 3.079 (3) Å and N2-H2B···O2 155.0°] hydrogen bonds [symmetry codes: (i) x + 1/2, y, 1/2 - z; (ii) 1/2 - x, y - 1/2, z] link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

The title compound, (I), was prepared according to the literature method (Ayyangar et al., 1981). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.2 g) in acetonitrile (25 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
Fig. 2.
A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C12H12N2O2S·C2H3NF000 = 1216
Mr = 289.35Dx = 1.285 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 9.1690 (18) Åθ = 10–13º
b = 15.559 (3) ŵ = 0.22 mm1
c = 20.960 (4) ÅT = 294 (2) K
V = 2990.2 (10) Å3Block, light yellow
Z = 80.40 × 0.30 × 0.30 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.0000
Radiation source: fine-focus sealed tubeθmax = 25.1º
Monochromator: graphiteθmin = 1.9º
T = 294(2) Kh = 0→10
ω/2θ scansk = 0→18
Absorption correction: ψ scan(North et al., 1968)l = 0→24
Tmin = 0.917, Tmax = 0.9373 standard reflections
2674 measured reflections every 120 min
2674 independent reflections intensity decay: none
1644 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.135  w = 1/[σ2(Fo2) + (0.05P)2 + 2P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2674 reflectionsΔρmax = 0.36 e Å3
175 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S0.45811 (9)0.20077 (5)0.17605 (4)0.0493 (3)
O10.5131 (3)0.23557 (15)0.23465 (12)0.0692 (8)
O20.3393 (3)0.24395 (14)0.14448 (13)0.0662 (7)
N10.9991 (3)0.2160 (3)0.11603 (18)0.0941 (13)
H1B1.01850.23050.15470.113*
H1C1.06830.21160.08850.113*
N20.1514 (3)−0.06128 (19)0.11889 (14)0.0639 (9)
H2B0.1248−0.11380.12400.077*
H2C0.1096−0.02980.09050.077*
N30.8308 (6)−0.0861 (3)0.0059 (2)0.125
C10.8592 (4)0.2000 (2)0.09841 (18)0.0560 (9)
C20.8255 (5)0.1794 (2)0.03521 (19)0.0657 (11)
H2D0.90050.17460.00560.079*
C30.6825 (5)0.1660 (3)0.01564 (19)0.0690 (11)
H3A0.66330.1513−0.02660.083*
C40.5695 (4)0.1741 (2)0.05805 (17)0.0582 (10)
H4A0.47340.16650.04500.070*
C50.6022 (3)0.19405 (19)0.12110 (15)0.0428 (8)
C60.7437 (4)0.2064 (2)0.14153 (16)0.0502 (8)
H6A0.76220.21890.18410.060*
C70.2607 (4)−0.0275 (2)0.15608 (15)0.0454 (8)
C80.3005 (3)0.05871 (19)0.14943 (15)0.0434 (8)
H8A0.25630.09270.11850.052*
C90.4056 (3)0.09322 (19)0.18883 (15)0.0431 (8)
C100.4737 (4)0.0444 (2)0.23542 (17)0.0582 (10)
H10A0.54330.06850.26230.070*
C110.4356 (4)−0.0407 (2)0.24077 (19)0.0650 (11)
H11A0.4818−0.07490.27110.078*
C120.3309 (4)−0.0763 (2)0.20243 (17)0.0563 (9)
H12A0.3064−0.13390.20740.068*
C130.6947 (7)−0.0534 (4)0.1078 (2)0.130 (2)
H13A0.6632−0.10620.12700.195*
H13B0.6113−0.01820.09860.195*
H13C0.7580−0.02340.13680.195*
C140.7706 (5)−0.0714 (3)0.0506 (2)0.0858 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S0.0474 (5)0.0365 (4)0.0641 (6)−0.0012 (4)0.0097 (5)−0.0078 (4)
O10.0785 (18)0.0611 (15)0.0680 (17)−0.0187 (14)0.0159 (15)−0.0280 (13)
O20.0520 (14)0.0409 (13)0.106 (2)0.0105 (12)0.0076 (15)0.0041 (13)
N10.0447 (19)0.153 (4)0.085 (3)−0.007 (2)0.0034 (18)0.003 (2)
N20.075 (2)0.0524 (17)0.064 (2)−0.0164 (16)−0.0116 (18)0.0000 (15)
N30.1250.1250.1250.0000.0000.000
C10.045 (2)0.060 (2)0.063 (2)0.0023 (19)0.0006 (18)0.0063 (19)
C20.064 (3)0.073 (3)0.060 (3)0.006 (2)0.019 (2)0.003 (2)
C30.072 (3)0.088 (3)0.046 (2)−0.002 (2)0.002 (2)−0.004 (2)
C40.051 (2)0.069 (2)0.054 (2)−0.0041 (19)−0.0050 (19)−0.0003 (18)
C50.0463 (18)0.0338 (16)0.048 (2)−0.0005 (15)0.0029 (16)0.0007 (15)
C60.0490 (19)0.0523 (19)0.049 (2)−0.0045 (18)−0.0020 (18)−0.0006 (17)
C70.0461 (19)0.0424 (18)0.048 (2)−0.0019 (16)0.0052 (17)−0.0044 (15)
C80.0448 (19)0.0408 (17)0.0447 (18)0.0043 (15)0.0052 (16)0.0023 (15)
C90.0413 (18)0.0376 (17)0.050 (2)0.0034 (14)0.0030 (16)−0.0015 (15)
C100.059 (2)0.053 (2)0.063 (2)−0.0074 (18)−0.013 (2)0.0013 (18)
C110.070 (3)0.055 (2)0.069 (2)−0.005 (2)−0.021 (2)0.0174 (19)
C120.064 (2)0.0436 (19)0.061 (2)−0.0034 (19)0.002 (2)0.0042 (17)
C130.182 (7)0.111 (4)0.097 (4)0.030 (4)0.051 (4)−0.002 (3)
C140.092 (4)0.087 (3)0.078 (3)0.013 (3)−0.002 (3)0.004 (3)

Geometric parameters (Å, °)

S—O11.434 (2)C5—C61.380 (4)
S—O21.441 (2)C6—H6A0.9300
S—C51.756 (3)C7—C121.390 (5)
S—C91.762 (3)C7—C81.398 (4)
C1—N11.358 (5)C8—C91.378 (4)
C1—C61.396 (5)C8—H8A0.9300
C1—C21.397 (5)C9—C101.386 (4)
N1—H1B0.8600C10—C111.375 (5)
N1—H1C0.8600C10—H10A0.9300
N2—C71.374 (4)C11—C121.368 (5)
N2—H2B0.8600C11—H11A0.9300
N2—H2C0.8600C12—H12A0.9300
C2—C31.390 (5)C13—C141.415 (6)
C2—H2D0.9300C13—H13A0.9600
C3—C41.371 (5)C13—H13B0.9600
C3—H3A0.9300C13—H13C0.9600
C4—C51.390 (5)C14—N31.111 (6)
C4—H4A0.9300
O1—S—O2118.90 (16)C5—C6—H6A119.9
O1—S—C5108.65 (16)C1—C6—H6A119.9
O2—S—C5107.18 (15)N2—C7—C12121.7 (3)
O1—S—C9108.95 (15)N2—C7—C8120.1 (3)
O2—S—C9107.82 (15)C12—C7—C8118.2 (3)
C5—S—C9104.40 (14)C9—C8—C7119.8 (3)
N1—C1—C6121.8 (3)C9—C8—H8A120.1
N1—C1—C2120.6 (4)C7—C8—H8A120.1
C6—C1—C2117.6 (3)C8—C9—C10121.6 (3)
C1—N1—H1B120.0C8—C9—S118.1 (2)
C1—N1—H1C120.0C10—C9—S120.3 (3)
H1B—N1—H1C120.0C11—C10—C9118.1 (3)
C7—N2—H2B120.0C11—C10—H10A121.0
C7—N2—H2C120.0C9—C10—H10A121.0
H2B—N2—H2C120.0C12—C11—C10121.3 (3)
C3—C2—C1121.5 (4)C12—C11—H11A119.3
C3—C2—H2D119.2C10—C11—H11A119.3
C1—C2—H2D119.2C11—C12—C7121.0 (3)
C4—C3—C2120.5 (4)C11—C12—H12A119.5
C4—C3—H3A119.7C7—C12—H12A119.5
C2—C3—H3A119.7C14—C13—H13A109.5
C3—C4—C5118.3 (3)C14—C13—H13B109.5
C3—C4—H4A120.9H13A—C13—H13B109.5
C5—C4—H4A120.9C14—C13—H13C109.5
C6—C5—C4121.9 (3)H13A—C13—H13C109.5
C6—C5—S119.7 (3)H13B—C13—H13C109.5
C4—C5—S118.3 (3)N3—C14—C13179.4 (6)
C5—C6—C1120.2 (3)
N1—C1—C2—C3−177.5 (4)N2—C7—C8—C9177.1 (3)
C6—C1—C2—C30.2 (6)C12—C7—C8—C9−0.7 (5)
C1—C2—C3—C41.2 (6)C7—C8—C9—C100.0 (5)
C2—C3—C4—C5−1.5 (6)C7—C8—C9—S177.0 (2)
C3—C4—C5—C60.6 (5)O1—S—C9—C8154.6 (2)
C3—C4—C5—S−177.8 (3)O2—S—C9—C824.3 (3)
O1—S—C5—C611.1 (3)C5—S—C9—C8−89.5 (3)
O2—S—C5—C6140.7 (3)O1—S—C9—C10−28.3 (3)
C9—S—C5—C6−105.0 (3)O2—S—C9—C10−158.6 (3)
O1—S—C5—C4−170.5 (3)C5—S—C9—C1087.6 (3)
O2—S—C5—C4−40.9 (3)C8—C9—C10—C111.2 (5)
C9—S—C5—C473.3 (3)S—C9—C10—C11−175.8 (3)
C4—C5—C6—C10.8 (5)C9—C10—C11—C12−1.5 (6)
S—C5—C6—C1179.1 (3)C10—C11—C12—C70.8 (6)
N1—C1—C6—C5176.6 (4)N2—C7—C12—C11−177.4 (3)
C2—C1—C6—C5−1.2 (5)C8—C7—C12—C110.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6A···O10.932.532.913 (4)105
C8—H8A···O20.932.532.906 (4)104
N1—H1B···O1i0.862.323.147 (5)161
N2—H2B···O2ii0.862.283.079 (4)155

Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2464).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Ayyangar, N. R., Lugade, A. G., Nikrad, P. V. & Sharma, V. K. (1981). Synthesis, pp. 640–643.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Rudyk, H., Knaggs, M. H., Vasiljevic, S., Hope, J., Birkett, C. & Gilbert, I. H. (2003). Eur. J. Med. Chem.38, 567–579. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Yang, C. P., Woo, E. M. & Jou, G. L. (2003). J. Therm. Anal. Calorim.74, 843–852.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography