PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): m765.
Published online 2008 May 3. doi:  10.1107/S1600536808012282
PMCID: PMC2961366

catena-Poly[[diaqua­manganese(II)]-di-μ-pyridine-3-sulfonato-κ2 N:O2 O:N]

Abstract

In the title polymeric complex, [Mn(C5H4NO3S)2(H2O)2]n, the Mn atom is located on a centre of inversion and is coordinated by two O atoms and two N atoms derived from four different pyridine-3-sulfonate (pySO3) ligands, and two O atoms derived from two water mol­ecules in a distorted trans-N2O4 octa­hedral geometry. The metal atoms are bridged by the pySO3 ligands to form a one-dimensional chain. The chains are further connected into a three-dimensional architecture via hydrogen bonds.

Related literature

For related structures, see: Brodersen et al. (1980 [triangle]); Chandrasekhar (1977 [triangle]); Cotton et al. (1992a [triangle],b [triangle]); Mäkinen et al.(2001 [triangle]); Van der Lee & Barboiu (2004 [triangle]); Walsh & Hathaway (1980 [triangle]). For a description of the Cambridge Structural Database, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m765-scheme1.jpg

Experimental

Crystal data

  • [Mn(C5H4NO3S)2(H2O)2]
  • M r = 407.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m765-efi1.jpg
  • a = 7.6299 (13) Å
  • b = 13.201 (2) Å
  • c = 7.2714 (12) Å
  • β = 96.516 (3)°
  • V = 727.7 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.24 mm−1
  • T = 294 (2) K
  • 0.24 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.755, T max = 0.808
  • 4034 measured reflections
  • 1485 independent reflections
  • 1301 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.069
  • S = 1.06
  • 1485 reflections
  • 106 parameters
  • H-atom parameters constrained
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012282/gk2137sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012282/gk2137Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Guangxi (GKJ0639031), People’s Republic of China.

supplementary crystallographic information

Comment

Structures of complexes or salts based on pyridinium-3-sulfonate are not numerous in the Cambridge Structural Database (CSD; Version 5.25; Allen, 2002). Some six-coordinate metal complexes with pyridine-3-sulfonate (pySO3) ligands that are closely related to the title complex have been reported (Walsh & Hathaway, 1980; Cotton et al., 1992a). Other pySO3 complexes are also available (Brodersen et al., 1980; Cotton et al., 1992b; Mäkinen et al., 2001; van der Lee & Barboiu, 2004), as well as that of the pySO3H acid (Chandrasekhar, 1977). There are two structures of the [M(pySO3)2(H2O)2] type in the CSD. One of them is isostructural with the title compound (Walsh & Hathaway, 1980; Cotton et al., 1992a) and the other structure is a two-dimensional coordination polymer (Brodersen et al.,1980).

The Mn atom is located on a centre of inversion and is six-coordinated by two N atoms and two O atoms derived from four different pySO3, and two O atoms derived from two water molecules (Fig. 1). The resulting trans-N2O4 donor set defines a distorted octahedral environment for Mn. The bond angles deviate considerably from 90°; those derived from the bulkier groups deviate by nearly 6°. The Mn—O(water) distance of 2.1681 (15) Å and Mn—O(pySO3) distance of 2.1772 (15) Å are in the usual range.The Mn—N distance is also in the usual range for pyridine-like ligands.

The metal ions are bridgeding pySO3 anions to form a chain. In the crystal structure, chains are linked into a 3-D architecture via hydrogen bonding interactions (Table 1 & Fig. 2).

Experimental

Pyridinium-3-sulfonate, (1 mmol,159 mg) was dissolved in methanol (A.R.,99.9%) (10 ml). To the resulting clear solution was added MnCl2.4H2O (0.5 mmol, 98 mg) in methanol (10 ml). After keeping the resulting mixture in air to evaporate about half of the solvent, colourless blocks of the title compound were deposited. The crystals were isolated and washed with alcohol three times (yield 82%). Analysis found (%): C 29.38, H 2.90, N 6.89, S 15.80; C10H12MnN2O8S2 requires (%): C 29.47, H 2.94, N 6.87, S 15.71.

Refinement

The H atoms of the water molecules were located in a difference map. The H atoms bonded to C atoms were placed at calculated positions and refined in a riding-model approximation [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The O-H distances were standardized to 0.89 Å and the H atoms of the water molecules were refined in a riding-model approximation with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
The atom-numbering scheme and 50% probability displacement ellipsoids for the title compound. The Mn atom is located at a center of inversion. H atoms are shown as small spheres of arbitrary radii [symmetry code: (a) -1 + x,y,z].
Fig. 2.
Crystal packing of the title compound viewed approximately down the a-direction showing the hydrogen bonding interactions as dashed lines.

Crystal data

[Mn(C5H4NO3S)2(H2O)2]F000 = 414
Mr = 407.28Dx = 1.859 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2334 reflections
a = 7.6299 (13) Åθ = 2.7–26.4º
b = 13.201 (2) ŵ = 1.24 mm1
c = 7.2714 (12) ÅT = 294 (2) K
β = 96.516 (3)ºBlock, colourless
V = 727.7 (2) Å30.24 × 0.22 × 0.18 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer1485 independent reflections
Radiation source: fine-focus sealed tube1301 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
Detector resolution: 0 pixels mm-1θmax = 26.4º
T = 298(2) Kθmin = 2.7º
[var phi] and ω scansh = −8→9
Absorption correction: multi-scan(SADABS; Bruker, 1998)k = −16→15
Tmin = 0.755, Tmax = 0.808l = −9→7
4034 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.026  w = 1/[σ2(Fo2) + (0.0952P)2 + 1.5031P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.24 e Å3
1485 reflectionsΔρmin = −0.37 e Å3
106 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.087 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.00001.00000.00000.01892 (13)
S10.72645 (6)0.87969 (4)0.28519 (7)0.01996 (14)
O10.7153 (2)0.95339 (12)0.4310 (2)0.0344 (4)
O20.8234 (2)0.78954 (11)0.3466 (2)0.0345 (4)
O30.7864 (2)0.92419 (13)0.1200 (2)0.0364 (4)
O40.0783 (2)1.09357 (11)0.2404 (2)0.0316 (4)
H4A0.13311.07350.34920.038*
H4B0.11331.15740.22950.038*
N10.2084 (2)0.88314 (12)0.1103 (2)0.0232 (4)
C10.1706 (3)0.78382 (15)0.1017 (3)0.0249 (4)
H10.05470.76450.06460.030*
C20.2946 (3)0.70884 (16)0.1449 (3)0.0296 (5)
H20.26270.64090.13630.035*
C30.4668 (3)0.73661 (15)0.2010 (3)0.0263 (4)
H30.55340.68780.23030.032*
C40.5079 (2)0.83896 (15)0.2129 (3)0.0188 (4)
C50.3761 (3)0.90965 (14)0.1666 (3)0.0224 (4)
H50.40470.97810.17470.027*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0134 (2)0.0187 (2)0.0237 (2)−0.00056 (15)−0.00157 (16)0.00122 (16)
S10.0146 (2)0.0193 (2)0.0250 (3)0.00040 (17)−0.00246 (18)0.00251 (18)
O10.0305 (8)0.0318 (9)0.0386 (9)0.0022 (7)−0.0057 (7)−0.0107 (7)
O20.0252 (8)0.0247 (8)0.0499 (10)0.0067 (6)−0.0114 (7)0.0029 (7)
O30.0228 (8)0.0506 (10)0.0356 (9)−0.0106 (7)0.0022 (6)0.0125 (8)
O40.0398 (9)0.0249 (8)0.0281 (8)−0.0042 (7)−0.0054 (7)−0.0024 (6)
N10.0170 (8)0.0215 (8)0.0302 (9)−0.0009 (7)−0.0012 (7)0.0025 (7)
C10.0186 (10)0.0253 (10)0.0298 (11)−0.0038 (8)−0.0014 (8)0.0006 (9)
C20.0281 (12)0.0184 (10)0.0416 (13)−0.0043 (8)0.0011 (10)−0.0005 (9)
C30.0213 (10)0.0182 (10)0.0393 (12)0.0042 (8)0.0025 (9)0.0039 (8)
C40.0152 (9)0.0206 (10)0.0205 (9)−0.0006 (7)0.0009 (7)0.0013 (7)
C50.0186 (10)0.0156 (9)0.0322 (11)−0.0011 (7)−0.0009 (8)0.0012 (8)

Geometric parameters (Å, °)

Mn1—O42.1681 (15)N1—C51.345 (3)
Mn1—O3i2.1773 (15)C1—C21.381 (3)
Mn1—N12.2937 (16)C1—H10.9300
S1—O21.4449 (15)C2—C31.380 (3)
S1—O11.4489 (16)C2—H20.9300
S1—O31.4570 (16)C3—C41.388 (3)
S1—C41.7737 (19)C3—H30.9300
O4—H4A0.8922C4—C51.385 (3)
O4—H4B0.8897C5—H50.9300
N1—C11.342 (3)
O4—Mn1—O4ii180.0C1—N1—C5117.40 (17)
O4—Mn1—O3i95.12 (6)C1—N1—Mn1120.26 (13)
O4ii—Mn1—O3i84.88 (6)C5—N1—Mn1121.96 (13)
O3iii—Mn1—O3i180.0N1—C1—C2123.47 (18)
O4—Mn1—N189.13 (6)N1—C1—H1118.3
O4ii—Mn1—N190.87 (6)C2—C1—H1118.3
O3iii—Mn1—N185.90 (6)C1—C2—C3118.80 (19)
O3i—Mn1—N194.09 (6)C1—C2—H2120.6
N1ii—Mn1—N1180.00 (6)C3—C2—H2120.6
O2—S1—O1113.41 (10)C2—C3—C4118.54 (18)
O2—S1—O3112.91 (10)C2—C3—H3120.7
O1—S1—O3112.51 (10)C4—C3—H3120.7
O2—S1—C4105.84 (9)C5—C4—C3119.22 (18)
O1—S1—C4106.81 (9)C5—C4—S1119.99 (15)
O3—S1—C4104.50 (9)C3—C4—S1120.79 (15)
S1—O3—Mn1iv146.62 (10)N1—C5—C4122.57 (18)
Mn1—O4—H4A127.1N1—C5—H5118.7
Mn1—O4—H4B121.7C4—C5—H5118.7
H4A—O4—H4B104.2
O2—S1—O3—Mn1iv−66.4 (2)C1—C2—C3—C40.4 (3)
O1—S1—O3—Mn1iv63.6 (2)C2—C3—C4—C5−0.6 (3)
C4—S1—O3—Mn1iv179.06 (19)C2—C3—C4—S1179.69 (16)
O4—Mn1—N1—C1137.80 (16)O2—S1—C4—C5172.26 (16)
O4ii—Mn1—N1—C1−42.20 (16)O1—S1—C4—C551.12 (18)
O3iii—Mn1—N1—C1−137.26 (16)O3—S1—C4—C5−68.31 (18)
O3i—Mn1—N1—C142.73 (16)O2—S1—C4—C3−8.1 (2)
O4—Mn1—N1—C5−49.49 (16)O1—S1—C4—C3−129.20 (18)
O4ii—Mn1—N1—C5130.51 (16)O3—S1—C4—C3111.38 (18)
O3iii—Mn1—N1—C535.44 (16)C1—N1—C5—C40.7 (3)
O3i—Mn1—N1—C5−144.56 (16)Mn1—N1—C5—C4−172.23 (14)
C5—N1—C1—C2−0.9 (3)C3—C4—C5—N10.1 (3)
Mn1—N1—C1—C2172.13 (16)S1—C4—C5—N1179.77 (16)
N1—C1—C2—C30.4 (3)

Symmetry codes: (i) x−1, y, z; (ii) −x, −y+2, −z; (iii) −x+1, −y+2, −z; (iv) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4B···O2v0.891.912.786 (2)168
O4—H4A···O1vi0.891.902.778 (2)169

Symmetry codes: (v) −x+1, y+1/2, −z+1/2; (vi) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2137).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Brodersen, K., Dolling, R. & Liehr, G. (1980). Z. Anorg. Allg. Chem.464, 17–22.
  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chandrasekhar, K. (1977). Acta Cryst. B33, 143–145.
  • Cotton, F. A., Daniels, L. M., Montero, M. L. & Murillo, C. A. (1992b). Polyhedron, 11, 2767–2774.
  • Cotton, F. A., Daniels, L. M. & Murillo, C. A. (1992a). Polyhedron, 11, 2475–2481.
  • Mäkinen, S. K., Melcer, N. J., Parvez, M. & Shimizu, G. K. H. (2001). Chem. Eur. J 7, 5176–5182. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Lee, A. van der & Barboiu, M. (2004). Acta Cryst. E60, m421–m423.
  • Walsh, B. & Hathaway, B. J. (1980). J. Chem. Soc., Dalton Trans pp. 681–689.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography