PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1116.
Published online 2008 May 21. doi:  10.1107/S1600536808014694
PMCID: PMC2961360

5-Iodo-7-methyl-3-methyl­sulfinyl-2-phenyl-1-benzofuran

Abstract

The title compound, C16H13IO2S, was prepared by the oxidation of 5-iodo-7-methyl-3-methyl­sulfanyl-2-phenyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring makes a dihedral angle of 27.17 (9)° with the plane of the benzofuran fragment, with the O atom and the methyl group of the methyl­sulfinyl substituent lying on opposite sides of this plane. The crystal structure exhibits inter­molecular C—H(...)I inter­actions, and an I(...)O halogen bond of 3.107 (2) Å with a nearly linear C—I(...)O angle of 173.73 (6)°.

Related literature

For the crystal structures of similar 5-halo-3-methyl­sulfinyl-2-phenyl-1-benzofuran compounds, see: Choi et al. (2007a [triangle],b [triangle]). For a review of halogen bonding, see: Politzer et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1116-scheme1.jpg

Experimental

Crystal data

  • C16H13IO2S
  • M r = 396.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1116-efi1.jpg
  • a = 10.385 (5) Å
  • b = 17.174 (8) Å
  • c = 8.943 (4) Å
  • β = 112.847 (7)°
  • V = 1469.9 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.32 mm−1
  • T = 173 (2) K
  • 0.40 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.572, T max = 0.623
  • 11429 measured reflections
  • 2877 independent reflections
  • 2706 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.053
  • S = 1.06
  • 2877 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.66 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014694/zl2118sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014694/zl2118Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

This work is related to our previous communications on the synthesis and structure of 5-halo-3-methylsulfinyl-2-phenyl-1-benzofuran analogues, viz. 5-bromo-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007a) and 5-iodo-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007b). Here we report the crystal structure of the title compound, 5-iodo-7-methyl-3-methylsulfinyl-2-phenyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.013 Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9-C14) makes a dihedral angle of 27.17 (9)° with the plane of the benzofuran fragment. The molecular packing (Fig. 2) is stabilized by intermolecular C—H···I interactions (Table 1), and by an I···O halogen bond (Politzer et al., 2007) between the iodine atom and the oxygen of a neighbouring S═O unit, with an I···O2i distance of 3.107 (2) Å (symmetry code as in Fig. 2).

Experimental

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 5-iodo-7-methyl-3-methylsulfanyl-2-phenyl-1-benzofuran (380 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 79%, m.p. 433-434 K; Rf = 0.51 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in tetrahydrofuran at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.53 (s, 3H), 3.11 (s, 3H), 7.49-7.58 (m, 4H), 7.83 (dd, J = 8.04 Hz and 1.84 Hz, 2H), 8.39 (s, 1H); EI-MS 396 [M+].

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C-H = 0.95 Å for aromatic H atoms, 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms. The highest peak in the difference map is 0.98 Å from I and the largest hole is 0.92 Å from I.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
C—H···I interaction and I···O halogen bond (dotted lines) in the title compound. [Symmetry code: (i) -x, -y+1, -z.]

Crystal data

C16H13IO2SF000 = 776
Mr = 396.22Dx = 1.790 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9956 reflections
a = 10.385 (5) Åθ = 2.1–28.4º
b = 17.174 (8) ŵ = 2.32 mm1
c = 8.943 (4) ÅT = 173 (2) K
β = 112.847 (7)ºBlock, colorless
V = 1469.9 (12) Å30.40 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2877 independent reflections
Radiation source: fine-focus sealed tube2706 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.032
Detector resolution: 10.0 pixels mm-1θmax = 26.0º
T = 173(2) Kθmin = 2.4º
[var phi] and ω scansh = −12→12
Absorption correction: multi-scan(SADABS; Sheldrick, 2000)k = −21→21
Tmin = 0.572, Tmax = 0.623l = −11→11
11429 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.053  w = 1/[σ2(Fo2) + (0.0278P)2 + 0.8832P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2877 reflectionsΔρmax = 0.39 e Å3
183 parametersΔρmin = −0.66 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I−0.043288 (13)0.558358 (8)0.210981 (16)0.02333 (7)
S0.36162 (5)0.29269 (3)0.14788 (6)0.02051 (11)
O10.50724 (14)0.38231 (8)0.59241 (16)0.0184 (3)
O20.30733 (17)0.35243 (9)0.01551 (18)0.0280 (3)
C10.3955 (2)0.34115 (11)0.3340 (2)0.0186 (4)
C20.3154 (2)0.40433 (12)0.3616 (2)0.0185 (4)
C30.1901 (2)0.44237 (11)0.2685 (3)0.0199 (4)
H30.13850.42910.15810.024*
C40.1451 (2)0.50027 (12)0.3454 (2)0.0203 (4)
C50.2211 (2)0.52118 (12)0.5084 (2)0.0211 (4)
H50.18660.56140.55560.025*
C60.3460 (2)0.48423 (11)0.6021 (2)0.0195 (4)
C70.3883 (2)0.42659 (12)0.5218 (2)0.0182 (4)
C80.5095 (2)0.32999 (11)0.4756 (2)0.0180 (4)
C90.6257 (2)0.27448 (12)0.5307 (2)0.0184 (4)
C100.7494 (2)0.29442 (13)0.6599 (3)0.0267 (5)
H100.75910.34450.70820.032*
C110.8579 (2)0.24128 (14)0.7177 (3)0.0357 (6)
H110.94170.25500.80610.043*
C120.8452 (2)0.16800 (14)0.6474 (3)0.0333 (5)
H120.91990.13170.68750.040*
C130.7229 (2)0.14820 (13)0.5185 (3)0.0284 (5)
H130.71440.09840.46930.034*
C140.6129 (2)0.20047 (12)0.4608 (3)0.0242 (4)
H140.52870.18610.37380.029*
C150.4267 (2)0.50275 (13)0.7788 (3)0.0265 (5)
H15A0.40920.46240.84600.040*
H15B0.39670.55340.80430.040*
H15C0.52680.50460.80100.040*
C160.2127 (2)0.23678 (14)0.1402 (3)0.0310 (5)
H16A0.13750.27210.13690.046*
H16B0.23910.20370.23690.046*
H16C0.18030.20410.04280.046*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I0.01881 (9)0.02267 (10)0.02713 (10)0.00497 (5)0.00739 (7)0.00177 (5)
S0.0221 (3)0.0235 (3)0.0161 (2)0.0048 (2)0.00748 (19)−0.00083 (18)
O10.0190 (7)0.0184 (7)0.0170 (6)0.0028 (5)0.0060 (6)−0.0001 (5)
O20.0330 (9)0.0325 (8)0.0175 (7)0.0065 (7)0.0088 (6)0.0050 (6)
C10.0197 (9)0.0193 (10)0.0179 (9)0.0009 (8)0.0084 (8)−0.0004 (7)
C20.0194 (9)0.0184 (9)0.0193 (9)0.0006 (8)0.0094 (8)0.0015 (7)
C30.0199 (10)0.0203 (10)0.0187 (10)0.0017 (8)0.0067 (8)0.0017 (7)
C40.0170 (9)0.0227 (10)0.0215 (10)0.0023 (8)0.0077 (8)0.0038 (8)
C50.0248 (10)0.0186 (10)0.0226 (10)0.0023 (8)0.0123 (9)−0.0007 (8)
C60.0233 (10)0.0180 (9)0.0193 (10)−0.0003 (8)0.0105 (8)0.0006 (7)
C70.0185 (10)0.0169 (9)0.0194 (10)−0.0004 (8)0.0075 (8)0.0025 (7)
C80.0205 (10)0.0174 (9)0.0181 (9)−0.0016 (8)0.0096 (8)−0.0008 (7)
C90.0177 (9)0.0206 (10)0.0186 (9)0.0003 (8)0.0090 (8)0.0040 (7)
C100.0219 (11)0.0215 (10)0.0324 (12)−0.0011 (9)0.0057 (9)−0.0006 (9)
C110.0186 (11)0.0308 (12)0.0452 (14)0.0026 (9)−0.0013 (10)0.0021 (10)
C120.0233 (11)0.0274 (12)0.0478 (14)0.0080 (9)0.0121 (11)0.0091 (10)
C130.0324 (12)0.0209 (10)0.0338 (12)0.0036 (9)0.0150 (10)0.0013 (9)
C140.0251 (11)0.0232 (10)0.0234 (10)0.0010 (9)0.0086 (9)−0.0003 (8)
C150.0320 (12)0.0269 (11)0.0190 (10)0.0020 (9)0.0080 (9)−0.0031 (8)
C160.0315 (12)0.0311 (12)0.0278 (11)−0.0070 (10)0.0087 (10)−0.0055 (9)

Geometric parameters (Å, °)

I—C42.107 (2)C8—C91.465 (3)
I—O2i3.107 (2)C9—C101.396 (3)
S—O21.501 (2)C9—C141.400 (3)
S—C11.770 (2)C10—C111.385 (3)
S—C161.799 (2)C10—H100.9500
O1—C71.377 (2)C11—C121.390 (4)
O1—C81.385 (2)C11—H110.9500
C1—C81.370 (3)C12—C131.386 (3)
C1—C21.446 (3)C12—H120.9500
C2—C71.389 (3)C13—C141.385 (3)
C2—C31.404 (3)C13—H130.9500
C3—C41.389 (3)C14—H140.9500
C3—H30.9500C15—H15A0.9800
C4—C51.409 (3)C15—H15B0.9800
C5—C61.394 (3)C15—H15C0.9800
C5—H50.9500C16—H16A0.9800
C6—C71.391 (3)C16—H16B0.9800
C6—C151.507 (3)C16—H16C0.9800
C4—I—O2i173.73 (6)C10—C9—C8119.45 (19)
O2—S—C1107.27 (10)C14—C9—C8121.16 (18)
O2—S—C16106.30 (11)C11—C10—C9120.1 (2)
C1—S—C1698.10 (10)C11—C10—H10120.0
C7—O1—C8106.69 (15)C9—C10—H10120.0
C8—C1—C2107.15 (17)C10—C11—C12120.5 (2)
C8—C1—S126.05 (16)C10—C11—H11119.8
C2—C1—S126.59 (15)C12—C11—H11119.8
C7—C2—C3119.48 (19)C13—C12—C11119.6 (2)
C7—C2—C1105.27 (17)C13—C12—H12120.2
C3—C2—C1135.23 (19)C11—C12—H12120.2
C4—C3—C2116.85 (19)C14—C13—C12120.5 (2)
C4—C3—H3121.6C14—C13—H13119.7
C2—C3—H3121.6C12—C13—H13119.7
C3—C4—C5122.24 (19)C13—C14—C9120.0 (2)
C3—C4—I118.20 (15)C13—C14—H14120.0
C5—C4—I119.56 (15)C9—C14—H14120.0
C6—C5—C4121.56 (19)C6—C15—H15A109.5
C6—C5—H5119.2C6—C15—H15B109.5
C4—C5—H5119.2H15A—C15—H15B109.5
C5—C6—C7114.84 (18)C6—C15—H15C109.5
C5—C6—C15122.91 (19)H15A—C15—H15C109.5
C7—C6—C15122.21 (19)H15B—C15—H15C109.5
O1—C7—C2110.71 (17)S—C16—H16A109.5
O1—C7—C6124.27 (18)S—C16—H16B109.5
C2—C7—C6125.00 (19)H16A—C16—H16B109.5
C1—C8—O1110.17 (17)S—C16—H16C109.5
C1—C8—C9134.83 (18)H16A—C16—H16C109.5
O1—C8—C9114.93 (16)H16B—C16—H16C109.5
C10—C9—C14119.33 (19)
O2—S—C1—C8−138.12 (18)C5—C6—C7—O1−179.08 (18)
C16—S—C1—C8111.9 (2)C15—C6—C7—O1−1.3 (3)
O2—S—C1—C236.1 (2)C5—C6—C7—C2−0.8 (3)
C16—S—C1—C2−73.9 (2)C15—C6—C7—C2176.9 (2)
C8—C1—C2—C7−0.4 (2)C2—C1—C8—O10.0 (2)
S—C1—C2—C7−175.49 (15)S—C1—C8—O1175.08 (14)
C8—C1—C2—C3−179.1 (2)C2—C1—C8—C9176.7 (2)
S—C1—C2—C35.9 (3)S—C1—C8—C9−8.2 (3)
C7—C2—C3—C4−1.1 (3)C7—O1—C8—C10.5 (2)
C1—C2—C3—C4177.4 (2)C7—O1—C8—C9−176.98 (16)
C2—C3—C4—C50.8 (3)C1—C8—C9—C10157.6 (2)
C2—C3—C4—I−179.53 (14)O1—C8—C9—C10−25.8 (3)
C3—C4—C5—C6−0.5 (3)C1—C8—C9—C14−25.2 (3)
I—C4—C5—C6179.82 (15)O1—C8—C9—C14151.38 (18)
C4—C5—C6—C70.5 (3)C14—C9—C10—C110.0 (3)
C4—C5—C6—C15−177.3 (2)C8—C9—C10—C11177.3 (2)
C8—O1—C7—C2−0.7 (2)C9—C10—C11—C120.4 (4)
C8—O1—C7—C6177.71 (19)C10—C11—C12—C130.0 (4)
C3—C2—C7—O1179.63 (17)C11—C12—C13—C14−0.8 (4)
C1—C2—C7—O10.7 (2)C12—C13—C14—C91.2 (3)
C3—C2—C7—C61.2 (3)C10—C9—C14—C13−0.8 (3)
C1—C2—C7—C6−177.73 (19)C8—C9—C14—C13−178.01 (19)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···Ii0.953.063.954 (3)157

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2118).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o1315–o1316.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst E63, o3745.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model 13, 305–311. [PubMed]
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography