PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1050.
Published online 2008 May 10. doi:  10.1107/S1600536808013457
PMCID: PMC2961355

2-Hydr­oxy-3,3-dimethyl-7-nitro-3,4-dihydro­isoquinolin-1(2H)-one

Abstract

In the title compound, C11H12N2O4, a new hydroxamic acid which belonging to the isoquinole family, the heterocyclic ring adopts a half-chair conformation. The nitro group is essentially coplanar with the aromatic ring. Inter­molecular O—H(...)O hydrogen bonds assemble the mol­ecules around inversion centres to form pseudo-dimers.

Related literature

For related literature, see: Bohé & Kammoun (2004 [triangle]); Kurzak et al. (1992 [triangle]); Porcheddu & Giacomelli (2006 [triangle]); Weber (1983 [triangle]); Miller (1989 [triangle]); Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1050-scheme1.jpg

Experimental

Crystal data

  • C11H12N2O4
  • M r = 236.23
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1050-efi1.jpg
  • a = 5.8805 (9) Å
  • b = 18.605 (4) Å
  • c = 10.1588 (17) Å
  • β = 103.056 (12)°
  • V = 1082.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 296 K
  • 0.60 × 0.51 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (Coppens et al., 1965 [triangle]) T min = 0.938, T max = 0.975
  • 7659 measured reflections
  • 3286 independent reflections
  • 2051 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.150
  • S = 1.11
  • 3286 reflections
  • 157 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013457/dn2332sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013457/dn2332Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Hydroxamic acids are strong metal ion chelators (Kurzak et al., 1992), they posses a wide spectrum of biological activities, such as antibacterial, antifungal, anti-inflammatory, and anti-asthmatic properties, etc. (Weber, 1983; Miller 1989).

The growing number of published synthetic methods further points to the biological significance of hydroxamic acids (Porcheddu & Giacomelli, 2006). Among this family of hydroxamic acids is the title compound (1). We report herein its synthesis and its crystal structure determination. Synthesis of the title compound has been prepared from the corresponding dihydroisoquinoleine (2) by metachloroperbenzoic acid oxidation (Fig. 1). Imine (2) was described by Bohé and Kammoun (2004), in three steps from the commercially available tertiary alcohol (3).

In the title compound, the heterocyclic ring adopts a half-chair conformation as indicated by the puckering parameters: Q = 0.4224 (14)Å, θ = 57.87 (18)°, [var phi] = 281.2 (2)° (Cremer & Pople, 1975). The nitro group attached on C7 is essentially coplanar with the aromatic nucleus (Fig. 2). The methyl substituent in position 3 of the heterocyclic ring is pseudo-axial, the second methyl in position 3 is pseudo-equatorial.

The conformation of (1) is stabilized by an intramolecular hydrogen bond between the hydroxyl O12—H12 group and atom O11 (Table 1).The molecules are assembled by intermolecualr O-H···O hydrogen bonds to form pseudo dimer arranged around inversion centre (Table 1, Fig. 3)

Experimental

The title compound was prepared by reaction of imine (2) (100 mg, 0.49 mmol), and methachloroperbenzoique acid 86% (197 mg, 0.98 mmol) in dichloromethane (15 ml). The mixture was stirred at room temperature for 24 h. Then, the mixture was diluted with CH2Cl2 and washed with a solution of saturated NaHCO3. The organic phase was dried over sodium sulfate, filtered and concentrated under reduced pressure. The concentrate was chromatographed on silica gel, with (ether) as eluent (yield 40%). m.p.418 K. Spectroscopic analysis, 1H NMR (300 MHz; DMSO-d6, p.p.m): 1.26 (s, 6H, 2Me 3); 3.23 (s, 2H); 7.59 (d, J = 8.4, 1H, aromatic H); 8.33 (dd, J = 8.4, J= 2.4, 1H, aromatic H); 8.56 (d, J = 2.4, 1H aromatic H); 9.8 (s wide, 1H, OH). 13 C NMR (75 MHz; DMSO-d6, p.p.m): 25.24; 41.80; 60.66; 122.02; 126.87; 129.91;130.41; 144.05; 147.21; 160.08. M.S (EI, 70 ev): m/z: 236 (M+.); 221 [(M–15)+., base peak]. MS (HR): Found: 236,0844 calcd mass for C11H12N2O4: 236,0875. Recrystallizations from dichloromethane afford yellow crystals suitable for diffraction.

Refinement

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl), 0.97 Å (methylene), 0.93Å (aromatic) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O, Caromatic).

Figures

Fig. 1.
Chemical pathway of the formation of hydroxamic acid.
Fig. 2.
Molecular view of the title compound with the atom-labelling scheme. Ellispsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 3.
Partial packing view showing the formation of pseudo dimer through O-H···O hydrogen bonds. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) 1-x, ...

Crystal data

C11H12N2O4F000 = 496
Mr = 236.23Dx = 1.449 Mg m3
Monoclinic, P21/nMelting point: 418 K
Hall symbol: -P 2ynMo Kα radiation λ = 0.71073 Å
a = 5.8805 (9) ÅCell parameters from 2421 reflections
b = 18.605 (4) Åθ = 2.5–23.2º
c = 10.1588 (17) ŵ = 0.11 mm1
β = 103.056 (12)ºT = 296 K
V = 1082.7 (3) Å3Prism, colourless
Z = 40.60 × 0.51 × 0.22 mm

Data collection

Bruker SMART CCD area-detector diffractometer3286 independent reflections
Radiation source: sealed tube2051 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
T = 296 Kθmax = 30.4º
[var phi] and ω scansθmin = 2.2º
Absorption correction: multi-scan(Coppens et al., 1965)h = −8→8
Tmin = 0.938, Tmax = 0.975k = 0→26
7659 measured reflectionsl = 0→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.151  w = 1/[σ2(Fo2) + (0.0543P)2 + 0.0949P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3286 reflectionsΔρmax = 0.26 e Å3
157 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7652 (2)0.53911 (7)0.36105 (13)0.0323 (3)
C30.7990 (2)0.67410 (7)0.36068 (15)0.0380 (3)
C40.8660 (3)0.66689 (8)0.22427 (15)0.0426 (3)
H4A0.72560.66920.15270.051*
H4B0.96450.70720.21270.051*
C51.1554 (3)0.59404 (8)0.13045 (14)0.0393 (3)
H51.19030.63470.08570.047*
C61.2662 (3)0.52948 (8)0.11699 (14)0.0410 (3)
H61.37790.52680.06530.049*
C71.2075 (2)0.46956 (7)0.18163 (13)0.0339 (3)
C81.0435 (2)0.47108 (7)0.25982 (13)0.0330 (3)
H81.00520.42970.30150.040*
C90.9371 (2)0.53674 (7)0.27418 (12)0.0296 (2)
C100.9923 (2)0.59838 (7)0.21048 (13)0.0338 (3)
C131.0066 (3)0.68808 (8)0.47591 (16)0.0471 (3)
H13A0.95660.68900.55960.071*
H13B1.07520.73350.46250.071*
H13C1.12000.65060.47890.071*
C140.6172 (3)0.73411 (8)0.35087 (19)0.0538 (4)
H14A0.48230.72260.28130.081*
H14B0.68290.77870.32940.081*
H14C0.57270.73860.43580.081*
N20.6880 (2)0.60494 (6)0.38233 (13)0.0402 (3)
N151.3238 (2)0.40117 (7)0.16643 (13)0.0438 (3)
O110.69294 (19)0.48475 (5)0.40857 (11)0.0437 (3)
O120.5448 (2)0.61049 (6)0.47313 (13)0.0542 (3)
H120.51290.57020.49610.081*
O161.4723 (3)0.40057 (7)0.09958 (16)0.0701 (4)
O171.2691 (3)0.34788 (6)0.22078 (16)0.0724 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0312 (5)0.0344 (6)0.0338 (6)−0.0011 (5)0.0129 (4)−0.0013 (5)
C30.0393 (7)0.0316 (6)0.0463 (8)0.0024 (5)0.0163 (5)0.0012 (5)
C40.0514 (8)0.0382 (7)0.0403 (7)0.0039 (6)0.0146 (6)0.0078 (5)
C50.0468 (8)0.0409 (7)0.0340 (7)−0.0071 (5)0.0172 (5)0.0027 (5)
C60.0422 (7)0.0506 (8)0.0357 (7)−0.0047 (6)0.0203 (5)−0.0025 (6)
C70.0331 (6)0.0385 (7)0.0323 (6)−0.0022 (5)0.0118 (4)−0.0066 (5)
C80.0341 (6)0.0356 (6)0.0316 (6)−0.0023 (4)0.0125 (4)−0.0028 (5)
C90.0251 (5)0.0356 (6)0.0300 (5)−0.0015 (4)0.0102 (4)−0.0009 (4)
C100.0369 (6)0.0378 (7)0.0283 (6)−0.0015 (5)0.0104 (4)0.0001 (5)
C130.0491 (8)0.0449 (8)0.0478 (8)−0.0067 (6)0.0120 (6)−0.0062 (6)
C140.0549 (10)0.0395 (8)0.0710 (11)0.0094 (7)0.0224 (8)0.0025 (7)
N20.0398 (6)0.0384 (6)0.0484 (7)0.0012 (5)0.0225 (5)−0.0004 (5)
N150.0435 (7)0.0449 (7)0.0484 (7)−0.0015 (5)0.0216 (5)−0.0107 (5)
O110.0474 (6)0.0392 (5)0.0530 (6)−0.0016 (4)0.0290 (5)0.0036 (4)
O120.0577 (7)0.0439 (6)0.0759 (8)0.0026 (5)0.0466 (6)−0.0024 (5)
O160.0803 (10)0.0621 (8)0.0872 (10)0.0148 (7)0.0593 (9)0.0031 (7)
O170.0887 (11)0.0377 (6)0.1104 (12)−0.0020 (6)0.0633 (10)−0.0055 (7)

Geometric parameters (Å, °)

C1—O111.2366 (15)C7—C81.3816 (17)
C1—N21.3407 (16)C7—N151.4690 (18)
C1—C91.4851 (16)C8—C91.3950 (17)
C3—N21.4818 (18)C8—H80.9300
C3—C131.511 (2)C9—C101.3905 (17)
C3—C41.530 (2)C13—H13A0.9600
C3—C141.533 (2)C13—H13B0.9600
C4—C101.497 (2)C13—H13C0.9600
C4—H4A0.9700C14—H14A0.9600
C4—H4B0.9700C14—H14B0.9600
C5—C61.388 (2)C14—H14C0.9600
C5—C101.3927 (18)N2—O121.3862 (14)
C5—H50.9300N15—O171.2130 (17)
C6—C71.3768 (19)N15—O161.2215 (16)
C6—H60.9300O12—H120.8200
O11—C1—N2121.69 (11)C9—C8—H8121.1
O11—C1—C9123.22 (11)C10—C9—C8121.09 (11)
N2—C1—C9115.07 (11)C10—C9—C1120.91 (11)
N2—C3—C13109.91 (12)C8—C9—C1118.00 (11)
N2—C3—C4105.70 (11)C9—C10—C5119.18 (12)
C13—C3—C4112.86 (12)C9—C10—C4119.07 (12)
N2—C3—C14108.53 (12)C5—C10—C4121.68 (12)
C13—C3—C14110.76 (13)C3—C13—H13A109.5
C4—C3—C14108.88 (12)C3—C13—H13B109.5
C10—C4—C3113.20 (11)H13A—C13—H13B109.5
C10—C4—H4A108.9C3—C13—H13C109.5
C3—C4—H4A108.9H13A—C13—H13C109.5
C10—C4—H4B108.9H13B—C13—H13C109.5
C3—C4—H4B108.9C3—C14—H14A109.5
H4A—C4—H4B107.8C3—C14—H14B109.5
C6—C5—C10120.56 (12)H14A—C14—H14B109.5
C6—C5—H5119.7C3—C14—H14C109.5
C10—C5—H5119.7H14A—C14—H14C109.5
C7—C6—C5118.67 (12)H14B—C14—H14C109.5
C7—C6—H6120.7C1—N2—O12117.02 (11)
C5—C6—H6120.7C1—N2—C3126.35 (11)
C6—C7—C8122.71 (12)O12—N2—C3112.85 (10)
C6—C7—N15118.59 (11)O17—N15—O16122.81 (13)
C8—C7—N15118.70 (12)O17—N15—C7118.86 (12)
C7—C8—C9117.77 (11)O16—N15—C7118.34 (12)
C7—C8—H8121.1N2—O12—H12109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O12—H12···O11i0.821.992.7013 (14)144
O12—H12···O110.822.202.6305 (15)113

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2332).

References

  • Bohé, L. & Kammoun, M. (2004). Tetrahedron Lett.45, 747–751.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
  • Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst.18, 1035–1038.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc 97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kurzak, B., Kozlowski, H. & Farkas, E. (1992). Coord. Chem. Rev.114, 169–171.
  • Miller, M. (1989). J. Chem. Rev.89, 1563–1662.
  • Porcheddu, A. & Giacomelli, G. (2006). J. Org. Chem.71, 7057–7059. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Weber, G. (1983). Cancer Res.43, 3466–3470. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography