PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1095–o1096.
Published online 2008 May 17. doi:  10.1107/S1600536808014190
PMCID: PMC2961354

Methyl 3-(4-bromo­phen­yl)-2-(1H-indol-3-ylmeth­yl)-5-[1-(4-methoxy­phen­yl)-4-oxo-2-phenyl­azetidin-2-yl]-4-nitro­pyrrolidine-2-carboxyl­ate

Abstract

In the title compound, C37H33BrN4O6, the pyrrolidine ring adopts an envelope conformation. The β-lactam ring is planar and makes dihedral angles of 70.16 (13) and 28.32 (13)° with the phenyl and 4-methoxy­phenyl rings, respectively. The mol­ecular packing is stabilized by intra­molecular C—H(...)O inter­actions and the crystal packing is determined by inter­molecular N—H(...)O hydrogen bonds, and C—H(...)O and C—H(...)π inter­actions.

Related literature

For related literature, see: Kamala et al. (2008 [triangle]); Lukacs & Ohno (1990 [triangle]); Sundari Bhaskaran et al. (2006 [triangle]); Suzuki et al. (1994 [triangle]); Yang et al. (1987 [triangle]); Amal Raj et al. (2003 [triangle]); Cremer & Pople (1975 [triangle]); Nardelli (1995 [triangle]); Ülkü et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1095-scheme1.jpg

Experimental

Crystal data

  • C37H33BrN4O6
  • M r = 709.58
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1095-efi5.jpg
  • a = 11.3988 (4) Å
  • b = 34.8587 (13) Å
  • c = 8.7039 (3) Å
  • β = 100.982 (2)°
  • V = 3395.1 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.26 mm−1
  • T = 293 (2) K
  • 0.30 × 0.22 × 0.22 mm

Data collection

  • Bruker Kappa APEX2 diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.703, T max = 0.769
  • 37282 measured reflections
  • 8532 independent reflections
  • 6397 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.120
  • S = 1.04
  • 8532 reflections
  • 433 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.37 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 4142 Friedel pairs
  • Flack parameter: 0.008 (6)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014190/rk2086sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014190/rk2086Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions. SN thanks SRM management, India, for their support.

supplementary crystallographic information

Comment

β–Lactams with a substituent at the N atom, which is easily removable under mild conditions have found wide applicability in the synthesis of bicyclic β–lactam antibiotics (Lukacs & Ohno, 1990). Substituted pyrrolidines have gained much importance because they are the structural elements of many alkaloids. It has been found that they exhibit antifungal activity against various pathogens (Amal Raj et al., 2003). Optically active pyrrolidine derivatives have been used as intermediates in controlled asymmetric synthesis (Suzuki et al., 1994). Since the title compound, (I), also contains an indole unit it may also exhibit some biological activity. In view of these, the structure of title compound is determined to establish the conformation of the molecule (Fig. 1).

The bond lengths and angles in I are agree with those observed in a similar structure (Sundari Bhaskaran et al., 2006; Kamala et al., 2008). The β–lactam ring is planar with its internal angles in the range 84.4 (2) to 95.5 (2)°. The C–C–C bond angle in the β–lactam ring is comparable to the values in related reported structures (Ulku et al., 1997). The bond N4?C16, is shorter than the bond lengths, N4—C14 and N4—C17 and is close to the length of a double bond, a feature observed in β–propiolactam (Yang et al., 1987) and where C and N are sp2 hybridized.

The methoxy group is coplanar with the C17/C18/C19/C20/C21/C22 benzene ring: dihedral angle C21–C20–O6–C23 = 161.0 (4)°. The methoxyphenyl and the phenyl rings bridged by the β–lactam ring are oriented at an angle of 42.32 (11)° with respect to each other, whereas the β–lactam ring makes a dihedral angles of 28.32 (13)° and 70.16 (13)° with them respectively. The indole moiety is planar and makes a dihedral angle of 38.01 (11)°, 62.8 (7)° and 73.8 (9)° with the β–lactam, bromophenyl and phenyl rings respectively. The nitro–group is orthogonal to indole moiety [89.2 (2)°] and makes a dihedral angle of 66.6 (3)° with the β–lactam ring.

The pyrrolidine ring N2/C10/C11/C12/C13 adopts an envelope conformation, with asymmetry parameters (Nardelli, 1995), ΔCS (C13) = 0.038 (2) and puckering parameters (Cremer & Pople, 1975) q2 = 0.377 (2)Å and [var phi] = 150.8 (3)°. Atom C13 deviates from the mean plane defined by N2/C10/C11/C12 on 0.573 (8) Å.

In the crystal structure of I (Fig.2), adjacent molecules are linked by N—H···O and C—H···O hydrogen bonds into chains. In addition, the packing is stabilized by C—H···Cg interactions involving C3/C4/C5/C6/C7/C8 rings with centroid Cg.

Experimental

The β–lactam aldehyde (1 mol) was treated with tryptophanmethylester hydrochloride (1 mol) in the presence of Et3N (2.5 mol) and anhydrous MgSO4 (2 g) in dry dichloromethane (10 ml) at room temperature for 12 h to give the imine. The imine was washed with water and dried over Na2SO4. The solvent was evaporated under vacuum. The imine (1 mol) was then strirred with silver(I) acetate and p–bromo nitrostyrene (1 mol) in the presence of Et3N (1.2 mol) and molecular sieves in dry toluene (30 ml) at room temperature for 12 h. The reaction mixture was filtered through a plug celite. The solvent was evaporated under reduced pressure and the residue was subjected to column chromatography on silica gel (100–200 mesh), with hexane–ethyl acetate (7:3) as eluent to give the product. The compound was recrystallized from ethyl acetate.

Refinement

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H respectively, and N—H = 0.86 Å, and with Uiso(H) = 1.5i>Ueq(C) for methyl and Uiso(H) = 1.2i>Ueq(parent C, N) for all other H atoms.

Figures

Fig. 1.
The molecular structure of I. The displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius. The intramolecular H–bond are drawn by dashed line.
Fig. 2.
The packing of the molecules viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involed in hydrogen bonds have been ommited for clarity. Symmetry codes: (i) x, y, z - 1; (ii) x, -y + 2, z - 1/2; (iii) x + 1/2, -y + 3/2, z - 1/2; ...

Crystal data

C37H33BrN4O6F000 = 1464
Mr = 709.58Dx = 1.388 Mg m3
Monoclinic, CcMo Kα radiation λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 13968 reflections
a = 11.3988 (4) Åθ = 2.3–23.4º
b = 34.8587 (13) ŵ = 1.26 mm1
c = 8.7039 (3) ÅT = 293 (2) K
β = 100.982 (2)ºPrism, colourless
V = 3395.1 (2) Å30.30 × 0.22 × 0.22 mm
Z = 4

Data collection

Bruker Kappa APEX2 diffractometer8532 independent reflections
Radiation source: fine–focus sealed tube6397 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
T = 293(2) Kθmax = 28.7º
ω and [var phi] scansθmin = 1.2º
Absorption correction: multi-scan(Blessing, 1995)h = −15→15
Tmin = 0.703, Tmax = 0.769k = −46→46
37282 measured reflectionsl = −11→11

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040  w = 1/[σ2(Fo2) + (0.0682P)2 + 0.1826P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.120(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.43 e Å3
8532 reflectionsΔρmin = −0.37 e Å3
433 parametersExtinction correction: none
2 restraintsAbsolute structure: Flack (1983), 4142 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.008 (6)
Secondary atom site location: difference Fourier map

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C11.0310 (3)0.82854 (8)0.0512 (3)0.0541 (6)
H10.99610.81560.12440.065*
C20.9937 (2)0.86265 (6)−0.0140 (3)0.0406 (5)
C31.07094 (19)0.87204 (7)−0.1184 (3)0.0388 (5)
C41.0793 (2)0.90284 (8)−0.2186 (3)0.0490 (6)
H41.02550.9231−0.22620.059*
C51.1678 (3)0.90276 (10)−0.3055 (4)0.0609 (7)
H51.17340.9231−0.37280.073*
C61.2498 (3)0.87257 (11)−0.2947 (4)0.0628 (8)
H61.30960.8734−0.35390.075*
C71.2437 (2)0.84207 (9)−0.1991 (4)0.0594 (7)
H71.29780.8219−0.19320.071*
C81.1543 (2)0.84186 (7)−0.1104 (3)0.0446 (5)
C90.8907 (2)0.88613 (7)0.0180 (3)0.0405 (5)
H9A0.82130.86970.01190.049*
H9B0.87150.9057−0.06220.049*
C100.91742 (18)0.90557 (6)0.1798 (2)0.0352 (5)
C110.81174 (18)0.93273 (6)0.2125 (3)0.0349 (4)
H110.84740.95730.25100.042*
C120.7686 (2)0.91299 (6)0.3488 (3)0.0386 (5)
H120.68110.91280.33190.046*
C130.8177 (2)0.87176 (6)0.3464 (3)0.0385 (5)
H130.76640.85840.25960.046*
C140.8218 (2)0.84705 (7)0.4896 (3)0.0435 (5)
H140.87380.85780.58220.052*
C150.6981 (3)0.83327 (8)0.5252 (3)0.0538 (6)
H150.69450.83690.63590.065*
C160.7435 (3)0.79315 (9)0.4961 (4)0.0637 (8)
C170.9507 (3)0.78706 (8)0.4405 (3)0.0561 (7)
C181.0634 (3)0.80218 (9)0.4846 (4)0.0689 (9)
H181.07220.82590.53420.083*
C191.1637 (4)0.78329 (10)0.4579 (5)0.0771 (10)
H191.23830.79490.48520.093*
C201.1543 (4)0.74769 (10)0.3916 (5)0.0737 (9)
C211.0396 (5)0.73262 (11)0.3432 (6)0.0990 (15)
H211.03120.70870.29500.119*
C220.9395 (4)0.75174 (10)0.3643 (6)0.0893 (13)
H220.86420.74130.32810.107*
C231.3582 (4)0.74477 (16)0.3661 (7)0.1051 (14)
H23A1.41640.72670.34450.158*
H23B1.38530.75590.46740.158*
H23C1.34750.76460.28810.158*
C240.5431 (3)0.82771 (10)0.2772 (4)0.0665 (8)
H240.58810.80820.24450.080*
C250.4380 (3)0.83898 (13)0.1818 (4)0.0798 (10)
H250.41180.82630.08760.096*
C260.3718 (3)0.86851 (12)0.2234 (5)0.0801 (10)
H260.30240.87660.15710.096*
C270.4099 (3)0.88592 (13)0.3652 (5)0.0802 (10)
H270.36450.90570.39580.096*
C280.5143 (3)0.87489 (11)0.4641 (4)0.0685 (8)
H280.53860.88740.55910.082*
C290.5832 (3)0.84510 (8)0.4218 (3)0.0544 (6)
C300.71391 (19)0.94108 (6)0.0732 (3)0.0363 (4)
C310.7291 (2)0.97173 (7)−0.0228 (3)0.0465 (6)
H310.79890.9862−0.00020.056*
C320.6435 (2)0.98119 (8)−0.1500 (4)0.0544 (7)
H320.65611.0016−0.21390.065*
C330.5397 (2)0.96064 (8)−0.1828 (3)0.0508 (6)
C340.5213 (2)0.93019 (9)−0.0920 (4)0.0586 (7)
H340.45070.9161−0.11530.070*
C350.6090 (2)0.92037 (8)0.0358 (3)0.0498 (6)
H350.59690.89950.09730.060*
C361.0328 (2)0.92886 (7)0.1965 (3)0.0419 (5)
C371.1292 (3)0.97884 (10)0.0855 (6)0.0814 (11)
H37A1.11370.9966−0.00020.122*
H37B1.19570.96280.07490.122*
H37C1.14760.99270.18230.122*
N11.1279 (2)0.81582 (6)−0.0061 (3)0.0549 (5)
H1A1.16590.79480.01970.066*
N20.93345 (17)0.87641 (5)0.3021 (2)0.0397 (4)
H20.99830.86440.34030.048*
N30.8208 (2)0.93141 (6)0.5030 (3)0.0462 (5)
N40.8479 (2)0.80657 (6)0.4657 (3)0.0533 (5)
O11.11802 (17)0.92443 (7)0.2958 (3)0.0690 (6)
O21.02387 (15)0.95506 (5)0.0846 (2)0.0551 (4)
O30.7714 (2)0.92499 (8)0.6116 (3)0.0771 (7)
O40.91172 (19)0.95038 (6)0.5130 (2)0.0617 (5)
O50.7038 (3)0.76121 (7)0.4957 (4)0.0892 (8)
O61.2477 (3)0.72571 (8)0.3636 (4)0.0996 (10)
Br10.42238 (4)0.974927 (13)−0.35828 (4)0.08931 (15)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0691 (16)0.0355 (13)0.0601 (16)0.0073 (11)0.0179 (13)0.0020 (11)
C20.0465 (11)0.0341 (12)0.0418 (12)0.0011 (9)0.0097 (9)−0.0032 (10)
C30.0393 (10)0.0357 (12)0.0389 (12)0.0034 (9)0.0016 (9)−0.0057 (9)
C40.0522 (12)0.0504 (15)0.0435 (14)0.0073 (11)0.0067 (11)0.0041 (11)
C50.0677 (17)0.0685 (18)0.0483 (15)−0.0068 (14)0.0159 (13)0.0043 (14)
C60.0496 (14)0.089 (2)0.0536 (16)−0.0031 (14)0.0189 (12)−0.0149 (16)
C70.0468 (13)0.0708 (19)0.0589 (17)0.0136 (12)0.0055 (12)−0.0192 (15)
C80.0451 (12)0.0426 (13)0.0427 (13)0.0089 (9)0.0000 (10)−0.0086 (11)
C90.0417 (11)0.0359 (12)0.0437 (12)0.0013 (9)0.0078 (9)0.0000 (9)
C100.0327 (8)0.0302 (10)0.0436 (13)0.0009 (8)0.0094 (9)0.0040 (9)
C110.0365 (10)0.0263 (10)0.0431 (12)−0.0011 (8)0.0103 (8)0.0000 (9)
C120.0389 (10)0.0354 (11)0.0419 (12)−0.0018 (8)0.0085 (9)0.0004 (9)
C130.0467 (11)0.0272 (10)0.0407 (11)−0.0055 (9)0.0060 (9)−0.0010 (9)
C140.0566 (13)0.0337 (12)0.0378 (11)−0.0081 (10)0.0027 (10)0.0031 (9)
C150.0735 (17)0.0474 (15)0.0435 (14)−0.0171 (12)0.0186 (12)0.0037 (11)
C160.090 (2)0.0456 (16)0.0543 (16)−0.0199 (14)0.0108 (15)0.0120 (13)
C170.0870 (19)0.0333 (13)0.0462 (14)−0.0035 (12)0.0080 (13)0.0045 (11)
C180.0743 (19)0.0456 (16)0.073 (2)0.0130 (14)−0.0217 (15)−0.0056 (14)
C190.079 (2)0.0572 (19)0.082 (2)0.0090 (16)−0.0163 (17)0.0014 (17)
C200.104 (3)0.0501 (17)0.0684 (19)0.0108 (17)0.0196 (18)0.0024 (15)
C210.138 (4)0.0461 (18)0.128 (4)−0.017 (2)0.064 (3)−0.032 (2)
C220.107 (3)0.0497 (18)0.122 (3)−0.0272 (19)0.050 (3)−0.026 (2)
C230.089 (3)0.113 (4)0.105 (3)0.030 (3)−0.003 (2)0.004 (3)
C240.0708 (18)0.0644 (19)0.0642 (19)−0.0175 (15)0.0123 (15)−0.0084 (15)
C250.071 (2)0.097 (3)0.065 (2)−0.0285 (19)−0.0031 (17)−0.0118 (18)
C260.0577 (17)0.100 (3)0.081 (2)−0.0084 (18)0.0086 (16)0.001 (2)
C270.0580 (18)0.105 (3)0.081 (2)−0.0011 (17)0.0217 (17)−0.003 (2)
C280.0642 (18)0.089 (2)0.0569 (17)−0.0115 (16)0.0242 (14)−0.0088 (16)
C290.0562 (14)0.0562 (16)0.0527 (15)−0.0229 (12)0.0150 (12)0.0019 (12)
C300.0364 (10)0.0284 (10)0.0459 (12)0.0033 (8)0.0127 (9)0.0020 (9)
C310.0422 (11)0.0388 (13)0.0579 (15)−0.0039 (9)0.0082 (11)0.0151 (11)
C320.0532 (14)0.0470 (15)0.0642 (17)0.0012 (11)0.0142 (13)0.0201 (13)
C330.0498 (13)0.0488 (14)0.0513 (14)0.0102 (11)0.0038 (11)0.0088 (12)
C340.0437 (12)0.0555 (17)0.0703 (18)−0.0125 (11)−0.0051 (12)0.0120 (14)
C350.0457 (12)0.0443 (14)0.0563 (15)−0.0075 (10)0.0017 (11)0.0168 (12)
C360.0369 (10)0.0364 (12)0.0532 (13)0.0003 (8)0.0110 (10)−0.0011 (10)
C370.068 (2)0.071 (2)0.109 (3)−0.0308 (16)0.026 (2)0.015 (2)
N10.0716 (14)0.0342 (11)0.0589 (14)0.0197 (10)0.0124 (11)0.0003 (10)
N20.0430 (9)0.0298 (10)0.0463 (11)0.0066 (7)0.0086 (8)0.0070 (8)
N30.0578 (12)0.0345 (11)0.0452 (11)0.0106 (9)0.0070 (9)−0.0021 (9)
N40.0763 (15)0.0329 (11)0.0496 (12)−0.0102 (10)0.0087 (10)0.0055 (9)
O10.0425 (9)0.0822 (15)0.0772 (14)−0.0107 (9)−0.0016 (9)0.0147 (12)
O20.0468 (9)0.0451 (10)0.0736 (13)−0.0128 (7)0.0120 (8)0.0133 (9)
O30.0954 (17)0.0919 (17)0.0507 (12)−0.0014 (13)0.0306 (12)−0.0115 (11)
O40.0706 (12)0.0474 (11)0.0580 (11)−0.0057 (9)−0.0105 (9)−0.0032 (9)
O50.115 (2)0.0477 (12)0.1045 (19)−0.0364 (13)0.0203 (16)0.0114 (12)
O60.128 (3)0.0694 (16)0.109 (2)0.0224 (17)0.042 (2)−0.0027 (15)
Br10.0742 (2)0.0972 (3)0.0835 (2)0.00646 (19)−0.01798 (16)0.0311 (2)

Geometric parameters (Å, °)

C1—C21.351 (4)C19—C201.364 (5)
C1—N11.370 (4)C19—H190.9300
C1—H10.9300C20—O61.371 (5)
C2—C31.419 (3)C20—C211.397 (7)
C2—C91.500 (3)C21—C221.364 (6)
C3—C41.398 (4)C21—H210.9300
C3—C81.410 (3)C22—H220.9300
C4—C51.371 (4)C23—O61.420 (6)
C4—H40.9300C23—H23A0.9600
C5—C61.399 (5)C23—H23B0.9600
C5—H50.9300C23—H23C0.9600
C6—C71.359 (5)C24—C251.379 (5)
C6—H60.9300C24—C291.393 (4)
C7—C81.391 (4)C24—H240.9300
C7—H70.9300C25—C261.366 (6)
C8—N11.357 (4)C25—H250.9300
C9—C101.540 (3)C26—C271.369 (6)
C9—H9A0.9700C26—H260.9300
C9—H9B0.9700C27—C281.384 (5)
C10—N21.458 (3)C27—H270.9300
C10—C361.529 (3)C28—C291.393 (5)
C10—C111.600 (3)C28—H280.9300
C11—C301.511 (3)C30—C351.381 (3)
C11—C121.532 (3)C30—C311.388 (3)
C11—H110.9800C31—C321.369 (4)
C12—N31.505 (3)C31—H310.9300
C12—C131.544 (3)C32—C331.366 (4)
C12—H120.9800C32—H320.9300
C13—N21.453 (3)C33—C341.363 (4)
C13—C141.508 (3)C33—Br11.895 (3)
C13—H130.9800C34—C351.390 (4)
C14—N41.465 (3)C34—H340.9300
C14—C151.576 (4)C35—H350.9300
C14—H140.9800C36—O11.180 (3)
C15—C291.498 (4)C36—O21.325 (3)
C15—C161.529 (5)C37—O21.458 (3)
C15—H150.9800C37—H37A0.9600
C16—O51.202 (4)C37—H37B0.9600
C16—N41.350 (4)C37—H37C0.9600
C17—C181.374 (5)N1—H1A0.8600
C17—C221.393 (5)N2—H20.8600
C17—N41.408 (4)N3—O31.210 (3)
C18—C191.377 (5)N3—O41.218 (3)
C18—H180.9300
C2—C1—N1110.1 (2)C20—C19—H19119.8
C2—C1—H1125.0C18—C19—H19119.8
N1—C1—H1125.0C19—C20—O6125.6 (4)
C1—C2—C3106.7 (2)C19—C20—C21117.6 (4)
C1—C2—C9126.7 (2)O6—C20—C21116.8 (3)
C3—C2—C9126.6 (2)C22—C21—C20122.3 (3)
C4—C3—C8118.6 (2)C22—C21—H21118.8
C4—C3—C2134.5 (2)C20—C21—H21118.8
C8—C3—C2106.9 (2)C21—C22—C17119.5 (4)
C5—C4—C3119.2 (3)C21—C22—H22120.3
C5—C4—H4120.4C17—C22—H22120.3
C3—C4—H4120.4O6—C23—H23A109.5
C4—C5—C6121.1 (3)O6—C23—H23B109.5
C4—C5—H5119.5H23A—C23—H23B109.5
C6—C5—H5119.5O6—C23—H23C109.5
C7—C6—C5121.2 (2)H23A—C23—H23C109.5
C7—C6—H6119.4H23B—C23—H23C109.5
C5—C6—H6119.4C25—C24—C29121.2 (3)
C6—C7—C8118.2 (3)C25—C24—H24119.4
C6—C7—H7120.9C29—C24—H24119.4
C8—C7—H7120.9C26—C25—C24121.1 (3)
N1—C8—C7130.8 (2)C26—C25—H25119.5
N1—C8—C3107.4 (2)C24—C25—H25119.5
C7—C8—C3121.8 (3)C25—C26—C27118.4 (4)
C2—C9—C10112.56 (19)C25—C26—H26120.8
C2—C9—H9A109.1C27—C26—H26120.8
C10—C9—H9A109.1C26—C27—C28121.7 (4)
C2—C9—H9B109.1C26—C27—H27119.2
C10—C9—H9B109.1C28—C27—H27119.2
H9A—C9—H9B107.8C27—C28—C29120.3 (3)
N2—C10—C36108.35 (18)C27—C28—H28119.9
N2—C10—C9109.65 (18)C29—C28—H28119.9
C36—C10—C9109.74 (18)C24—C29—C28117.3 (3)
N2—C10—C11106.06 (16)C24—C29—C15121.5 (3)
C36—C10—C11109.40 (17)C28—C29—C15121.2 (3)
C9—C10—C11113.48 (17)C35—C30—C31117.5 (2)
C30—C11—C12114.28 (18)C35—C30—C11124.2 (2)
C30—C11—C10115.92 (18)C31—C30—C11118.3 (2)
C12—C11—C10103.63 (16)C32—C31—C30121.4 (2)
C30—C11—H11107.5C32—C31—H31119.3
C12—C11—H11107.5C30—C31—H31119.3
C10—C11—H11107.5C33—C32—C31119.9 (2)
N3—C12—C11111.63 (18)C33—C32—H32120.0
N3—C12—C13109.04 (19)C31—C32—H32120.0
C11—C12—C13103.74 (18)C34—C33—C32120.7 (3)
N3—C12—H12110.7C34—C33—Br1120.6 (2)
C11—C12—H12110.7C32—C33—Br1118.8 (2)
C13—C12—H12110.7C33—C34—C35119.3 (2)
N2—C13—C14113.3 (2)C33—C34—H34120.4
N2—C13—C12104.45 (17)C35—C34—H34120.4
C14—C13—C12118.4 (2)C30—C35—C34121.3 (2)
N2—C13—H13106.7C30—C35—H35119.4
C14—C13—H13106.7C34—C35—H35119.4
C12—C13—H13106.7O1—C36—O2124.4 (2)
N4—C14—C13114.1 (2)O1—C36—C10125.0 (2)
N4—C14—C1587.00 (18)O2—C36—C10110.6 (2)
C13—C14—C15116.6 (2)O2—C37—H37A109.5
N4—C14—H14112.3O2—C37—H37B109.5
C13—C14—H14112.3H37A—C37—H37B109.5
C15—C14—H14112.3O2—C37—H37C109.5
C29—C15—C16115.9 (2)H37A—C37—H37C109.5
C29—C15—C14120.7 (2)H37B—C37—H37C109.5
C16—C15—C1484.4 (2)C8—N1—C1108.9 (2)
C29—C15—H15111.1C8—N1—H1A125.5
C16—C15—H15111.1C1—N1—H1A125.5
C14—C15—H15111.1C13—N2—C10106.14 (17)
O5—C16—N4131.8 (4)C13—N2—H2126.9
O5—C16—C15135.1 (3)C10—N2—H2126.9
N4—C16—C1593.1 (2)O3—N3—O4124.1 (2)
C18—C17—C22118.0 (3)O3—N3—C12117.0 (2)
C18—C17—N4122.2 (3)O4—N3—C12118.8 (2)
C22—C17—N4119.8 (3)C16—N4—C17130.8 (2)
C17—C18—C19122.1 (3)C16—N4—C1495.5 (2)
C17—C18—H18119.0C17—N4—C14133.2 (2)
C19—C18—H18119.0C36—O2—C37116.1 (3)
C20—C19—C18120.4 (4)C20—O6—C23116.9 (3)
N1—C1—C2—C30.1 (3)C24—C25—C26—C27−2.3 (6)
N1—C1—C2—C9−179.8 (2)C25—C26—C27—C281.5 (6)
C1—C2—C3—C4−179.9 (3)C26—C27—C28—C29−0.8 (5)
C9—C2—C3—C40.0 (4)C25—C24—C29—C28−1.5 (4)
C1—C2—C3—C80.0 (3)C25—C24—C29—C15−179.3 (3)
C9—C2—C3—C8179.9 (2)C27—C28—C29—C240.7 (4)
C8—C3—C4—C50.0 (4)C27—C28—C29—C15178.5 (3)
C2—C3—C4—C5179.9 (3)C16—C15—C29—C24−21.8 (3)
C3—C4—C5—C6−0.4 (4)C14—C15—C29—C2477.4 (3)
C4—C5—C6—C70.8 (5)C16—C15—C29—C28160.5 (3)
C5—C6—C7—C8−0.8 (4)C14—C15—C29—C28−100.3 (3)
C6—C7—C8—N1−179.4 (3)C12—C11—C30—C35−26.5 (3)
C6—C7—C8—C30.4 (4)C10—C11—C30—C3593.9 (3)
C4—C3—C8—N1179.9 (2)C12—C11—C30—C31152.7 (2)
C2—C3—C8—N1−0.1 (3)C10—C11—C30—C31−86.9 (3)
C4—C3—C8—C70.0 (4)C35—C30—C31—C320.0 (4)
C2—C3—C8—C7−179.9 (2)C11—C30—C31—C32−179.3 (2)
C1—C2—C9—C1072.9 (3)C30—C31—C32—C331.1 (4)
C3—C2—C9—C10−107.0 (3)C31—C32—C33—C34−1.4 (5)
C2—C9—C10—N2−65.0 (2)C31—C32—C33—Br1179.2 (2)
C2—C9—C10—C3653.9 (2)C32—C33—C34—C350.6 (5)
C2—C9—C10—C11176.64 (18)Br1—C33—C34—C35179.9 (2)
N2—C10—C11—C30−131.23 (19)C31—C30—C35—C34−0.8 (4)
C36—C10—C11—C30112.1 (2)C11—C30—C35—C34178.4 (3)
C9—C10—C11—C30−10.8 (2)C33—C34—C35—C300.6 (5)
N2—C10—C11—C12−5.2 (2)N2—C10—C36—O1−2.4 (3)
C36—C10—C11—C12−121.86 (19)C9—C10—C36—O1−122.1 (3)
C9—C10—C11—C12115.22 (19)C11—C10—C36—O1112.8 (3)
C30—C11—C12—N3−133.95 (19)N2—C10—C36—O2178.07 (18)
C10—C11—C12—N398.99 (19)C9—C10—C36—O258.4 (2)
C30—C11—C12—C13108.8 (2)C11—C10—C36—O2−66.7 (2)
C10—C11—C12—C13−18.3 (2)C7—C8—N1—C1179.9 (3)
N3—C12—C13—N2−82.7 (2)C3—C8—N1—C10.1 (3)
C11—C12—C13—N236.4 (2)C2—C1—N1—C8−0.1 (3)
N3—C12—C13—C1444.5 (3)C14—C13—N2—C10−171.01 (19)
C11—C12—C13—C14163.6 (2)C12—C13—N2—C10−40.8 (2)
N2—C13—C14—N4−68.2 (3)C36—C10—N2—C13145.89 (18)
C12—C13—C14—N4169.0 (2)C9—C10—N2—C13−94.4 (2)
N2—C13—C14—C15−167.4 (2)C11—C10—N2—C1328.5 (2)
C12—C13—C14—C1569.8 (3)C11—C12—N3—O3161.8 (2)
N4—C14—C15—C29−116.5 (3)C13—C12—N3—O3−84.1 (3)
C13—C14—C15—C29−1.0 (4)C11—C12—N3—O4−21.0 (3)
N4—C14—C15—C160.30 (19)C13—C12—N3—O493.0 (2)
C13—C14—C15—C16115.8 (2)O5—C16—N4—C17−8.2 (6)
C29—C15—C16—O5−57.5 (5)C15—C16—N4—C17173.2 (3)
C14—C15—C16—O5−178.9 (4)O5—C16—N4—C14179.0 (4)
C29—C15—C16—N4121.1 (2)C15—C16—N4—C140.4 (2)
C14—C15—C16—N4−0.3 (2)C18—C17—N4—C16−147.7 (3)
C22—C17—C18—C19−1.0 (5)C22—C17—N4—C1634.2 (5)
N4—C17—C18—C19−179.1 (3)C18—C17—N4—C1422.5 (5)
C17—C18—C19—C20−2.8 (6)C22—C17—N4—C14−155.6 (3)
C18—C19—C20—O6−178.0 (4)C13—C14—N4—C16−118.3 (2)
C18—C19—C20—C214.1 (6)C15—C14—N4—C16−0.3 (2)
C19—C20—C21—C22−1.8 (7)C13—C14—N4—C1769.2 (4)
O6—C20—C21—C22−179.9 (4)C15—C14—N4—C17−172.9 (3)
C20—C21—C22—C17−1.9 (7)O1—C36—O2—C371.6 (4)
C18—C17—C22—C213.2 (6)C10—C36—O2—C37−178.9 (3)
N4—C17—C22—C21−178.6 (4)C19—C20—O6—C23−17.0 (6)
C29—C24—C25—C262.4 (5)C21—C20—O6—C23161.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11···O40.982.272.717 (3)107
C4—H4···O4i0.932.573.186 (3)124
C31—H31···O4ii0.932.553.399 (3)152
N1—H1A···O5iii0.862.022.820 (3)155
C18—H18···Cgiv0.932.803.641 (4)151

Symmetry codes: (i) x, y, z−1; (ii) x, −y+2, z−1/2; (iii) x+1/2, −y+3/2, z−1/2; (iv) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2086).

References

  • Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem.11, 407–409. [PubMed]
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kamala, E. T. S., Nirmala, S., Sudha, L., Arumugam, N. & Raghunathan, R. (2008). Acta Cryst. E64, o716–o717. [PMC free article] [PubMed]
  • Lukacs, G. & Ohno, M. (1990). Editors. Recent Progress in the Chemical Synthesis of Antibiotics Berlin: Springer.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sundari Bhaskaran, Selvanayagam, S., Velmurugan, D., Ravikumar, K., Arumugam, N. & Raghunathan, R. (2006). Anal. Sci.22, 57–58.
  • Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett.35, 6119–6122.
  • Ülkü, D., Ercan, F. & Güner, V. (1997). Acta Cryst. C53, 1945–1947.
  • Yang, Q.-C., Seiler, P. & Dunitz, J. D. (1987). Acta Cryst. C43, 565–567.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography