PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1078–o1079.
Published online 2008 May 14. doi:  10.1107/S1600536808013652
PMCID: PMC2961349

(−)-N,N′-Bis[(1S,2R,5S)-6,6-dimethyl-bicyclo­[3.1.1]heptan-2-ylmeth­yl]pyridine-2,6-dicarboxamide monohydrate

Abstract

The title compound, C27H39N3O2·H2O, is a chiral pyridine-2,6-dicarboxamide derivative including cis-myrtanyl groups as amine substituents. The pyridine-2,6-dicarboxamide core approximates C 2 point symmetry and a solvent water mol­ecule lies on the pseudo-twofold axis. The water mol­ecule serves both as acceptor and donor for efficient hydrogen bonds involving N—H and C=O functional groups as donor and acceptor groups, respectively. As a result, each water mol­ecule in the crystal structure is tetra­hedrally bonded to three symmetry-related mol­ecules, forming a three-dimensional supra­molecular network. Such an arrangement is a common feature found in the majority of X-ray-characterized sym­metrically substituted pyridine-2,6-dicarboxamide derivatives.

Related literature

For background to the solvent–free synthesis used for the preparation of the title compound, see: Tanaka & Toda (2000 [triangle]); Vázquez et al. (2004 [triangle]); Tovar et al. (2007 [triangle]); Pérez-Flores & Gutiérrez (2008 [triangle]). For hydrates of pyridine-2,6-dicarboxamide derivatives, see: Yu et al. (1999 [triangle]); Qi et al. (2002 [triangle]); Jain et al. (2004 [triangle]); Odriozola et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1078-scheme1.jpg

Experimental

Crystal data

  • C27H39N3O2·H2O
  • M r = 455.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1078-efi2.jpg
  • a = 6.8476 (11) Å
  • b = 12.1101 (14) Å
  • c = 16.012 (2) Å
  • β = 91.173 (15)°
  • V = 1327.5 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 298 (1) K
  • 0.6 × 0.6 × 0.2 mm

Data collection

  • Bruker P4 diffractometer
  • Absorption correction: none
  • 6391 measured reflections
  • 3180 independent reflections
  • 2580 reflections with I > 2σ(I)
  • R int = 0.035
  • 3 standard reflections every 97 reflections intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.107
  • S = 1.04
  • 3180 reflections
  • 319 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and POV-RAY (Cason, 2004 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013652/rk2088sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013652/rk2088Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Partial support from VIEP–UAP (14/G/NAT/05) is acknowledged.

supplementary crystallographic information

Comment

Nowadays, reactions conducted in the absence of solvents under mild reaction conditions are becoming an important method in laboratories worldwide as an environment–friendly technique for the efficient syntheses of organic molecules. The main advantages of solvent-free organic synthesis are shorter reaction times, minimum waste and generally higher yields, operational simplicity as well as reduction of thermal degradative byproducts along with cleaner work–up (Tanaka & Toda, 2000). As part of an ongoing program aiming to develop simpler and eco–friendly methods for organic transformations under solvent–free conditions (Tovar et al., 2007; Vázquez et al., 2004), we engaged the preparation of chiral pincer ligands (Pérez-Flores & Gutiérrez, 2008). The title compound resulted from this research, by introducing chiral cis–myrtanyl groups as amine substituents.

The X–ray characterized monohydrate has the expected molecular geometry (Fig. 1). The pyridine–2,6–dicarboxamide core approximates a C2 point symmetry, with the pseudo 2–fold axis passing through N1 and C24. The guest water molecule O3 is placed on the pseudo 2–fold axis and is involved in two N—H···O hydrogen bonds within the asymmetric unit (Fig. 1 and Table 1, lines 1 and 2). The same water molecule is a donor group for two C═O···H intermolecular hydrogen bonds of relatively strong strength (Table 1, lines 3 and 4). As a consequence, a three–dimensional supramolecular structure is formed in the crystal structure, with water molecules being bonded in a tetrahedral arrangement (Fig. 2) to three symmetry–related molecules. Such a feature seems to be common for symmetrically substituted pyridine–2,6–dicarboxamide derivatives. These compounds are generally crystallized as hydrates, and, at least for X–ray characterized compounds, water molecules form hydrogen bonds similar to those observed in the title molecule (e.g. Yu et al., 1999; Qi et al., 2002; Jain et al., 2004; Odriozola et al., 2004).

Experimental

Under solvent–free conditions, (-)-cis–myrtanylamine (0.38 g, 2.5 mmol) and 2,6–pyridinedicarbonyl dichloride (0.30 g, 1.5 mmol) were mixed at room temperature, giving a white solid. The crude was recrystallized from EtOH affording the corresponding dicarboxamide (98% yield).

Refinement

C–bonded H atoms were placed in idealized positions and refined with a riding model approximation. Constrained C—H distances: 0.93 (aromatic CH), 0.96 (methyl CH3), 0.97 (methylene CH2) or 0.98 Å (methine CH). Isotropic displacement parameters: Uiso= 1.5Ueq(carrier C atom) for methyl groups and Uiso = 1.2Ueq(carrier C atom) otherwise. Methyl groups were considered as rigid rotating groups. Other H atoms (amine groups and water molecule) were found in a difference map and refined freely. Measured Friedel pairs (287) were merged.

Figures

Fig. 1.
The asymmetric unit for the title compound, with the numbering scheme. Displacement ellipsoids for non–H atoms are drawn at the 40% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed bonds are hydrogen bonds ...
Fig. 2.
A part of the packing structure for the title compound, showing the four H bonds formed by a water molecule, in a tetrahedral geometry (dashed bonds). Symmetry codes: (i) 1+x, y, z; (ii) 2-x, 1/2+y, 2-z. H atoms not involved in hydrogen bonds have been ...

Crystal data

C27H39N3O2·H2ODx = 1.140 Mg m3
Mr = 455.63Melting point = 398–401 K
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 60 reflections
a = 6.8476 (11) Åθ = 4.6–12.5º
b = 12.1101 (14) ŵ = 0.07 mm1
c = 16.012 (2) ÅT = 298 (1) K
β = 91.173 (15)ºCell measurement pressure: 101(2) kPa
V = 1327.5 (3) Å3Plate, colourless
Z = 20.6 × 0.6 × 0.2 mm
F000 = 496

Data collection

Bruker P4 diffractometerRint = 0.035
Radiation source: fine-focus sealed tubeθmax = 27.5º
Monochromator: Graphiteθmin = 2.1º
T = 298(1) Kh = −8→6
P = 101(2) kPak = −1→15
ω scansl = −20→20
Absorption correction: none3 standard reflections
6391 measured reflections every 97 reflections
3180 independent reflections intensity decay: 2%
2580 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: FullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107  w = 1/[σ2(Fo2) + (0.0551P)2 + 0.0694P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3180 reflectionsΔρmax = 0.14 e Å3
319 parametersΔρmin = −0.13 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.037 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.6298 (3)0.24506 (16)0.95082 (10)0.0520 (4)
N20.5268 (3)0.37490 (17)0.81930 (11)0.0558 (5)
H20.636 (4)0.374 (2)0.8414 (14)0.049 (6)*
N30.9690 (3)0.29137 (18)1.03447 (12)0.0576 (5)
H30.926 (3)0.330 (2)0.9926 (17)0.058 (7)*
O10.2258 (2)0.29762 (18)0.81492 (11)0.0731 (5)
O20.9360 (4)0.13912 (17)1.11410 (13)0.0893 (6)
C10.4749 (3)0.30035 (19)0.63787 (13)0.0529 (5)
H1A0.46420.24240.68030.063*
C20.5749 (3)0.4058 (2)0.66831 (13)0.0556 (5)
H2A0.71220.38690.67930.067*
C30.5733 (5)0.4954 (2)0.59935 (16)0.0724 (7)
H3A0.70400.52570.59550.087*
H3B0.48770.55490.61620.087*
C40.5059 (6)0.4548 (3)0.51078 (18)0.0866 (9)
H4A0.40460.50370.48930.104*
H4B0.61540.45890.47340.104*
C50.4292 (4)0.3386 (2)0.51132 (15)0.0737 (7)
H5A0.38430.31080.45670.088*
C60.2858 (3)0.3192 (2)0.58333 (14)0.0598 (5)
C70.5754 (4)0.2641 (2)0.55738 (16)0.0737 (7)
H7A0.71030.28780.55360.088*
H7B0.56130.18620.54450.088*
C80.1734 (5)0.2103 (3)0.5733 (2)0.0834 (8)
H8A0.08570.21520.52590.125*
H8B0.10030.19640.62270.125*
H8C0.26410.15100.56500.125*
C90.1402 (4)0.4092 (3)0.6038 (2)0.0831 (8)
H9A0.03860.41090.56170.125*
H9B0.20570.47930.60570.125*
H9C0.08430.39430.65720.125*
C100.4962 (4)0.45157 (19)0.74996 (14)0.0597 (5)
H10A0.56100.52090.76300.072*
H10B0.35760.46630.74300.072*
C110.9333 (3)0.3930 (2)1.20404 (14)0.0620 (6)
H11A0.81470.36101.17880.074*
C121.0879 (3)0.4242 (2)1.14197 (14)0.0604 (6)
H12A1.03400.48551.10880.072*
C131.2723 (5)0.4692 (3)1.18754 (18)0.0875 (9)
H13A1.30800.53851.16160.105*
H13B1.37840.41771.17880.105*
C141.2550 (5)0.4890 (3)1.28285 (19)0.0920 (10)
H14A1.36060.45071.31190.110*
H14B1.26920.56731.29420.110*
C151.0623 (5)0.4496 (3)1.31641 (16)0.0800 (8)
H15A1.04550.46111.37640.096*
C161.0091 (4)0.3322 (3)1.28420 (15)0.0737 (7)
C170.8967 (5)0.4939 (3)1.26053 (18)0.0884 (9)
H17A0.92450.56451.23460.106*
H17B0.76990.49421.28650.106*
C180.8353 (7)0.2817 (5)1.3307 (2)0.1257 (16)
H18A0.87570.26331.38680.189*
H18B0.79170.21621.30220.189*
H18C0.73050.33431.33220.189*
C191.1675 (6)0.2462 (3)1.2809 (2)0.0988 (11)
H19A1.27880.27621.25330.148*
H19B1.12010.18291.25050.148*
H19C1.20470.22451.33660.148*
C201.1400 (3)0.3334 (2)1.08030 (14)0.0637 (6)
H20A1.23280.36221.04090.076*
H20B1.20240.27311.11040.076*
C210.3935 (3)0.3035 (2)0.84428 (13)0.0548 (5)
C220.4577 (3)0.22560 (19)0.91276 (13)0.0540 (5)
C230.3379 (4)0.1377 (2)0.93392 (16)0.0700 (7)
H23A0.21800.12700.90680.084*
C240.4017 (5)0.0662 (3)0.99674 (19)0.0831 (8)
H24A0.32530.00631.01200.100*
C250.5781 (5)0.0851 (2)1.03575 (16)0.0756 (7)
H25A0.62380.03811.07770.091*
C260.6875 (4)0.17521 (19)1.01182 (13)0.0580 (5)
C270.8771 (4)0.2008 (2)1.05701 (14)0.0625 (6)
O30.9282 (3)0.42517 (19)0.87612 (13)0.0712 (5)
H310.970 (6)0.493 (4)0.871 (2)0.103 (12)*
H321.020 (6)0.384 (4)0.851 (2)0.111 (13)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0609 (10)0.0502 (9)0.0449 (8)−0.0055 (8)0.0042 (7)−0.0049 (8)
N20.0580 (10)0.0596 (11)0.0496 (9)−0.0052 (9)−0.0080 (8)−0.0031 (8)
N30.0677 (11)0.0598 (11)0.0448 (9)0.0007 (10)−0.0059 (8)−0.0011 (9)
O10.0527 (8)0.0858 (12)0.0805 (11)−0.0020 (9)−0.0054 (8)−0.0119 (10)
O20.1293 (17)0.0611 (11)0.0760 (12)0.0033 (12)−0.0296 (11)0.0112 (10)
C10.0608 (11)0.0457 (10)0.0521 (10)0.0023 (10)−0.0015 (9)−0.0007 (9)
C20.0563 (11)0.0551 (12)0.0553 (11)−0.0027 (10)−0.0024 (9)−0.0011 (10)
C30.0943 (18)0.0577 (14)0.0651 (14)−0.0191 (14)−0.0012 (13)0.0020 (12)
C40.127 (2)0.0740 (17)0.0585 (14)−0.0293 (18)−0.0019 (15)0.0070 (13)
C50.1024 (19)0.0689 (16)0.0497 (12)−0.0215 (15)−0.0041 (12)−0.0041 (12)
C60.0670 (13)0.0535 (12)0.0584 (12)−0.0066 (11)−0.0102 (9)0.0019 (10)
C70.0846 (16)0.0659 (15)0.0711 (15)−0.0043 (13)0.0138 (13)−0.0193 (13)
C80.0909 (18)0.0741 (18)0.0846 (18)−0.0257 (16)−0.0117 (15)−0.0012 (15)
C90.0700 (15)0.0827 (18)0.096 (2)0.0101 (15)−0.0225 (14)−0.0004 (16)
C100.0726 (13)0.0508 (12)0.0553 (11)−0.0009 (11)−0.0083 (10)−0.0044 (10)
C110.0634 (13)0.0698 (15)0.0523 (11)0.0122 (11)−0.0061 (9)−0.0083 (11)
C120.0732 (14)0.0547 (13)0.0527 (11)0.0017 (11)−0.0121 (10)0.0028 (10)
C130.0916 (19)0.100 (2)0.0709 (16)−0.0322 (18)−0.0087 (14)−0.0056 (16)
C140.118 (2)0.088 (2)0.0689 (16)−0.0129 (19)−0.0287 (16)−0.0106 (15)
C150.105 (2)0.0843 (19)0.0502 (12)0.0075 (17)−0.0120 (12)−0.0118 (13)
C160.0944 (17)0.0774 (18)0.0491 (12)−0.0003 (15)−0.0076 (11)0.0035 (12)
C170.102 (2)0.092 (2)0.0702 (16)0.0267 (18)−0.0074 (14)−0.0248 (16)
C180.154 (3)0.151 (4)0.0734 (19)−0.040 (3)0.026 (2)0.006 (2)
C190.145 (3)0.0752 (19)0.0743 (17)0.023 (2)−0.0426 (19)0.0044 (16)
C200.0604 (12)0.0768 (17)0.0539 (11)0.0021 (12)−0.0013 (9)−0.0068 (12)
C210.0500 (11)0.0603 (12)0.0542 (11)−0.0010 (10)0.0036 (8)−0.0155 (10)
C220.0580 (12)0.0564 (12)0.0481 (10)−0.0066 (10)0.0098 (9)−0.0131 (9)
C230.0706 (15)0.0743 (16)0.0654 (14)−0.0205 (13)0.0127 (11)−0.0153 (13)
C240.101 (2)0.0730 (17)0.0755 (16)−0.0347 (16)0.0194 (15)0.0035 (14)
C250.108 (2)0.0615 (15)0.0573 (13)−0.0187 (15)0.0054 (13)0.0036 (12)
C260.0786 (14)0.0501 (11)0.0456 (10)−0.0036 (11)0.0059 (10)−0.0029 (9)
C270.0860 (16)0.0513 (12)0.0501 (11)0.0064 (12)−0.0031 (11)−0.0034 (10)
O30.0613 (10)0.0674 (12)0.0853 (12)−0.0080 (10)0.0110 (8)−0.0047 (10)

Geometric parameters (Å, °)

N1—C221.337 (3)C11—C171.544 (4)
N1—C261.345 (3)C11—C161.559 (3)
N2—C211.325 (3)C11—H11A0.9800
N2—C101.459 (3)C12—C201.525 (4)
N2—H20.82 (2)C12—C131.545 (4)
N3—C271.318 (3)C12—H12A0.9800
N3—C201.461 (3)C13—C141.552 (4)
N3—H30.86 (3)C13—H13A0.9700
O1—C211.234 (3)C13—H13B0.9700
O2—C271.242 (3)C14—C151.512 (5)
C1—C21.524 (3)C14—H14A0.9700
C1—C71.537 (3)C14—H14B0.9700
C1—C61.564 (3)C15—C171.527 (4)
C1—H1A0.9800C15—C161.553 (4)
C2—C101.528 (3)C15—H15A0.9800
C2—C31.548 (3)C16—C191.506 (5)
C2—H2A0.9800C16—C181.543 (5)
C3—C41.562 (4)C17—H17A0.9700
C3—H3A0.9700C17—H17B0.9700
C3—H3B0.9700C18—H18A0.9600
C4—C51.502 (4)C18—H18B0.9600
C4—H4A0.9700C18—H18C0.9600
C4—H4B0.9700C19—H19A0.9600
C5—C71.526 (4)C19—H19B0.9600
C5—C61.548 (4)C19—H19C0.9600
C5—H5A0.9800C20—H20A0.9700
C6—C91.518 (4)C20—H20B0.9700
C6—C81.534 (4)C21—C221.505 (3)
C7—H7A0.9700C22—C231.390 (4)
C7—H7B0.9700C23—C241.391 (4)
C8—H8A0.9600C23—H23A0.9300
C8—H8B0.9600C24—C251.368 (4)
C8—H8C0.9600C24—H24A0.9300
C9—H9A0.9600C25—C261.382 (4)
C9—H9B0.9600C25—H25A0.9300
C9—H9C0.9600C26—C271.506 (3)
C10—H10A0.9700O3—H310.87 (5)
C10—H10B0.9700O3—H320.90 (4)
C11—C121.514 (4)
C22—N1—C26117.60 (19)C20—C12—C13111.1 (2)
C21—N2—C10123.8 (2)C11—C12—H12A106.5
C21—N2—H2119.2 (17)C20—C12—H12A106.5
C10—N2—H2116.9 (17)C13—C12—H12A106.5
C27—N3—C20122.3 (2)C12—C13—C14116.2 (3)
C27—N3—H3120.2 (17)C12—C13—H13A108.2
C20—N3—H3117.4 (17)C14—C13—H13A108.2
C2—C1—C7107.55 (19)C12—C13—H13B108.2
C2—C1—C6114.69 (18)C14—C13—H13B108.2
C7—C1—C687.32 (18)H13A—C13—H13B107.4
C2—C1—H1A114.7C15—C14—C13112.7 (2)
C7—C1—H1A114.7C15—C14—H14A109.1
C6—C1—H1A114.7C13—C14—H14A109.1
C1—C2—C10114.43 (19)C15—C14—H14B109.1
C1—C2—C3111.28 (17)C13—C14—H14B109.1
C10—C2—C3111.0 (2)H14A—C14—H14B107.8
C1—C2—H2A106.5C14—C15—C17108.9 (3)
C10—C2—H2A106.5C14—C15—C16111.8 (3)
C3—C2—H2A106.5C17—C15—C1687.8 (2)
C2—C3—C4115.1 (2)C14—C15—H15A115.1
C2—C3—H3A108.5C17—C15—H15A115.1
C4—C3—H3A108.5C16—C15—H15A115.1
C2—C3—H3B108.5C19—C16—C18107.8 (3)
C4—C3—H3B108.5C19—C16—C15118.8 (3)
H3A—C3—H3B107.5C18—C16—C15112.3 (3)
C5—C4—C3112.8 (2)C19—C16—C11121.7 (2)
C5—C4—H4A109.0C18—C16—C11109.7 (3)
C3—C4—H4A109.0C15—C16—C1185.0 (2)
C5—C4—H4B109.0C15—C17—C1186.4 (2)
C3—C4—H4B109.0C15—C17—H17A114.3
H4A—C4—H4B107.8C11—C17—H17A114.3
C4—C5—C7109.3 (2)C15—C17—H17B114.3
C4—C5—C6111.9 (2)C11—C17—H17B114.2
C7—C5—C688.31 (19)H17A—C17—H17B111.4
C4—C5—H5A114.8C16—C18—H18A109.5
C7—C5—H5A114.8C16—C18—H18B109.5
C6—C5—H5A114.8H18A—C18—H18B109.5
C9—C6—C8108.1 (2)C16—C18—H18C109.5
C9—C6—C5118.8 (2)H18A—C18—H18C109.5
C8—C6—C5112.2 (2)H18B—C18—H18C109.5
C9—C6—C1121.6 (2)C16—C19—H19A109.5
C8—C6—C1109.9 (2)C16—C19—H19B109.5
C5—C6—C184.67 (18)H19A—C19—H19B109.5
C5—C7—C186.32 (19)C16—C19—H19C109.5
C5—C7—H7A114.3H19A—C19—H19C109.5
C1—C7—H7A114.3H19B—C19—H19C109.5
C5—C7—H7B114.3N3—C20—C12112.38 (19)
C1—C7—H7B114.3N3—C20—H20A109.1
H7A—C7—H7B111.4C12—C20—H20A109.1
C6—C8—H8A109.5N3—C20—H20B109.1
C6—C8—H8B109.5C12—C20—H20B109.1
H8A—C8—H8B109.5H20A—C20—H20B107.9
C6—C8—H8C109.5O1—C21—N2124.4 (2)
H8A—C8—H8C109.5O1—C21—C22119.8 (2)
H8B—C8—H8C109.5N2—C21—C22115.86 (18)
C6—C9—H9A109.5N1—C22—C23122.9 (2)
C6—C9—H9B109.5N1—C22—C21117.59 (19)
H9A—C9—H9B109.5C23—C22—C21119.5 (2)
C6—C9—H9C109.5C22—C23—C24118.4 (2)
H9A—C9—H9C109.5C22—C23—H23A120.8
H9B—C9—H9C109.5C24—C23—H23A120.8
N2—C10—C2111.88 (19)C25—C24—C23119.2 (3)
N2—C10—H10A109.2C25—C24—H24A120.4
C2—C10—H10A109.2C23—C24—H24A120.4
N2—C10—H10B109.2C24—C25—C26118.9 (3)
C2—C10—H10B109.2C24—C25—H25A120.5
H10A—C10—H10B107.9C26—C25—H25A120.5
C12—C11—C17108.1 (2)N1—C26—C25123.0 (2)
C12—C11—C16115.7 (2)N1—C26—C27117.2 (2)
C17—C11—C1686.95 (19)C25—C26—C27119.7 (2)
C12—C11—H11A114.3O2—C27—N3123.5 (2)
C17—C11—H11A114.3O2—C27—C26119.6 (2)
C16—C11—H11A114.3N3—C27—C26116.9 (2)
C11—C12—C20114.9 (2)H31—O3—H32103 (4)
C11—C12—C13110.7 (2)
C7—C1—C2—C10−178.2 (2)C14—C15—C16—C18168.8 (3)
C6—C1—C2—C1086.5 (2)C17—C15—C16—C18−81.7 (3)
C7—C1—C2—C354.9 (3)C14—C15—C16—C11−81.9 (2)
C6—C1—C2—C3−40.3 (3)C17—C15—C16—C1127.6 (2)
C1—C2—C3—C4−10.1 (4)C12—C11—C16—C19−39.6 (4)
C10—C2—C3—C4−138.8 (3)C17—C11—C16—C19−148.2 (3)
C2—C3—C4—C57.6 (4)C12—C11—C16—C18−166.7 (3)
C3—C4—C5—C7−50.0 (4)C17—C11—C16—C1884.7 (3)
C3—C4—C5—C646.1 (4)C12—C11—C16—C1581.3 (3)
C4—C5—C6—C940.2 (3)C17—C11—C16—C15−27.3 (2)
C7—C5—C6—C9150.4 (2)C14—C15—C17—C1184.4 (3)
C4—C5—C6—C8167.5 (3)C16—C15—C17—C11−27.8 (2)
C7—C5—C6—C8−82.3 (2)C12—C11—C17—C15−88.3 (2)
C4—C5—C6—C1−83.1 (2)C16—C11—C17—C1527.7 (2)
C7—C5—C6—C127.07 (17)C27—N3—C20—C12−97.3 (3)
C2—C1—C6—C9−39.5 (3)C11—C12—C20—N355.0 (3)
C7—C1—C6—C9−147.6 (3)C13—C12—C20—N3−178.4 (2)
C2—C1—C6—C8−167.1 (2)C10—N2—C21—O1−4.0 (3)
C7—C1—C6—C884.8 (2)C10—N2—C21—C22175.63 (19)
C2—C1—C6—C581.2 (2)C26—N1—C22—C230.4 (3)
C7—C1—C6—C5−26.87 (18)C26—N1—C22—C21−179.78 (18)
C4—C5—C7—C185.2 (3)O1—C21—C22—N1−170.6 (2)
C6—C5—C7—C1−27.51 (18)N2—C21—C22—N19.8 (3)
C2—C1—C7—C5−87.9 (2)O1—C21—C22—C239.3 (3)
C6—C1—C7—C527.22 (18)N2—C21—C22—C23−170.4 (2)
C21—N2—C10—C2−95.3 (3)N1—C22—C23—C24−0.9 (4)
C1—C2—C10—N262.7 (2)C21—C22—C23—C24179.2 (2)
C3—C2—C10—N2−170.3 (2)C22—C23—C24—C250.5 (4)
C17—C11—C12—C20−179.3 (2)C23—C24—C25—C260.3 (4)
C16—C11—C12—C2085.2 (3)C22—N1—C26—C250.6 (3)
C17—C11—C12—C1353.8 (3)C22—N1—C26—C27−177.24 (19)
C16—C11—C12—C13−41.6 (3)C24—C25—C26—N1−0.9 (4)
C11—C12—C13—C14−8.2 (4)C24—C25—C26—C27176.8 (3)
C20—C12—C13—C14−137.1 (3)C20—N3—C27—O2−6.1 (4)
C12—C13—C14—C155.6 (5)C20—N3—C27—C26171.8 (2)
C13—C14—C15—C17−48.7 (4)N1—C26—C27—O2179.6 (2)
C13—C14—C15—C1646.6 (4)C25—C26—C27—O21.8 (3)
C14—C15—C16—C1941.7 (3)N1—C26—C27—N31.6 (3)
C17—C15—C16—C19151.2 (3)C25—C26—C27—N3−176.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O30.82 (2)2.16 (2)2.941 (3)160 (2)
N3—H3···O30.86 (3)2.19 (3)3.017 (3)159 (2)
O3—H31···O2i0.87 (5)1.90 (5)2.756 (3)167 (4)
O3—H32···O1ii0.90 (4)1.86 (5)2.754 (3)171 (3)

Symmetry codes: (i) −x+2, y+1/2, −z+2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2088).

References

  • Cason, C. J. (2004). POV-RAY for Windows Persistence of Vision Raytracer Pty Ltd, Victoria, Australia.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jain, S. L., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z., Crayston, J. A. & Woollins, J. D. (2004). J. Chem. Soc. Dalton Trans., pp. 862–871. [PubMed]
  • Odriozola, I., Kyritsakas, N. & Lehn, J.-M. (2004). Chem. Commun. pp. 62–63. [PubMed]
  • Pérez-Flores, F. J. & Gutiérrez, R. (2008). Synthesis. Submitted.
  • Qi, J. Y., Chen, J., Yang, Q. Y., Zhou, Z. Y. & Chan, A. S. C. (2002). Acta Cryst. E58, o1232–o1233.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Tanaka, K. & Toda, F. (2000). Chem. Rev.100, 1025–1074. [PubMed]
  • Tovar, A., Peña, U., Hernández, G., Portillo, R. & Gutiérrez, R. (2007). Synthesis, pp. 22–24.
  • Vázquez, J., Bernès, S., Reyes, Y., Moya, M., Sharma, P., Alvarez, C. & Gutiérrez, R. (2004). Synthesis, pp. 1955–1958.
  • Yu, Q., Baroni, T. E., Borovik, A. S., Liable-Sands, L., Yap, G. P. A. & Rheingold, A. L. (1999). Chem. Commun. pp. 1467–1468.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography