PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): i38.
Published online 2008 May 21. doi:  10.1107/S1600536808014797
PMCID: PMC2961348

Trilithium scandium bis­(orthoborate)

Abstract

Single crystals of the title compound, Li3Sc(BO3)2, have been obtained by spontaneous nucleation from a high-temperature melt. The title compound adopts a framework structure and is composed of distorted [ScO6] octa­hedra, [LiO4] tetra­hedra, [LiO4] recta­ngles and isolated [BO3] triangles. Except for the Sc and one Li atom (both on inversion centres), all atoms are in general positions.

Related literature

For a review of structural data of BO3 groups, see: Zobetz (1982 [triangle]). For sodium scandium borates, see: Becker & Held (2001 [triangle]); Zhang et al. (2006 [triangle]).

Experimental

Crystal data

  • Li3Sc(BO3)2
  • M r = 183.4
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i38-efi1.jpg
  • a = 4.7831 (17) Å
  • b = 5.954 (2) Å
  • c = 8.163 (3) Å
  • β = 90.702 (9)°
  • V = 232.44 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.53 mm−1
  • T = 293 (2) K
  • 0.12 × 0.10 × 0.10 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000 [triangle]) T min = 0.833, T max = 0.858
  • 1734 measured reflections
  • 534 independent reflections
  • 518 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.017
  • wR(F 2) = 0.058
  • S = 1.10
  • 534 reflections
  • 58 parameters
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku, 2000 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2004 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]).

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014797/wm2180sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014797/wm2180Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the National Science Found­ation of China (grant No. 60608018).

supplementary crystallographic information

Comment

Li3Sc(BO3)2, (I), was found from analysis of phase equilibria in the system Li2O—Sc2O3—B2O3, in which it is the first characterized pseudo-ternary phase. For the heavier Na homologue, two phases are already known, viz. Na3Sc2(BO3)3 (Zhang et al., 2006) and NaScB2O5 (Becker & Held, 2001).

The framework structure of (I) is made up of distorted [ScO6] octahedra, [LiO4] tetrahedra, [LiO4] rectangles and [BO3] triangles as single building units. The [ScO6] octahedra are linked via [LiO4] rectangles by sharing edges to form columns parallel to [010]. The columns are linked to each other through [LiO4] tetrahedra and [BO3] triangles by sharing edges and corners (Figs 1 and 2).

The B atom is coordinated to three oxygen atoms forming nearly trigonal planar [BO3]3- anions. The B—O bond lengths range from 1.376 (2) to 1.385 (2) Å, and the O—B—O angles are close to 120° (Table 1), values that are typical for BO3 groups (Zobetz, 1982). The Sc3+ cation is coordinated by six oxygen atoms to form a distorted [ScO6] ocahedron with Sc—O bond lengths ranging from 2.0854 (12) to 2.1197 (13) Å. There are two crystallographically different Li atoms. One is situated on an inversion centre (1 symmetry) and is coordinated to four oxygen atoms forming a nearly planar [LiO4] rectangle with Li1—O bond lengths ranging from 2.0107 (12) to 2.1173 (12) Å. The other Li atom is also coordinated to four O atoms, but is in the centre of a distorted tetrahedron with Li2—O bond lengths from 1.896 (3) to 2.137 (3) Å (Table 1). The average Li—O bond length of the [Li1O4] rectangle (2.064 Å) is slightly longer than that of the [Li2O4] tetrahedron (1.991 Å).

Experimental

Single crystals of compound (I) were grown using a LiBO2-containing flux. The composition of the mixture for crystal growth was 4:1:4 of Li2CO3 (Sinopharm Reagents, 99.99%), Sc2O3 (Sinopharm Reagents, 4 N), and B2O3 (Sinopharm Reagents, 99%). This mixture was heated in a platinum crucible to 1373 K, held at this temperature for several hours, and then cooled at a rate of 10 K/h from 1373 to 873 K. The remaining flux attached to the crystals was readily dissolved in water. Crystals with an average size of 0.5 mm and mostly block shaped habit were obtained.

Figures

Fig. 1.
The structure of (I) in a projection approximatly along the [001] direction with displacement ellipsoids drawn at the 85% probability level.
Fig. 2.
The structure of (I) given in the polyhedral description. [ScO6] octahedra are blue, [LiO4] tetrahedra are green, [LiO4] rectangles are purple, and [BO3] units are yellow.

Crystal data

Li3Sc(BO3)2F000 = 176
Mr = 183.4Dx = 2.62 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 623 reflections
a = 4.7831 (17) Åθ = 4.2–23.6º
b = 5.954 (2) ŵ = 1.53 mm1
c = 8.163 (3) ÅT = 293 (2) K
β = 90.702 (9)ºBlock, colourless
V = 232.44 (15) Å30.12 × 0.10 × 0.10 mm
Z = 2

Data collection

Rigaku Mercury CCD diffractometer534 independent reflections
Radiation source: Sealed Tube518 reflections with I > 2σ(I)
Monochromator: Graphite MonochromatorRint = 0.015
Detector resolution: 14.6306 pixels mm-1θmax = 27.5º
T = 293(1) Kθmin = 4.2º
CCD_Profile_fitting scansh = −6→4
Absorption correction: multi-scan(CrystalClear; Rigaku, 2000)k = −7→7
Tmin = 0.833, Tmax = 0.858l = −10→10
1734 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: full  w = 1/[σ2(Fo2) + (0.0318P)2 + 0.216P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017(Δ/σ)max < 0.001
wR(F2) = 0.058Δρmax = 0.28 e Å3
S = 1.10Δρmin = −0.23 e Å3
534 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008)
58 parametersExtinction coefficient: ?

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sc0000.00510 (15)
Li10−0.500.0209 (10)
Li2−0.0144 (6)−0.2513 (5)0.2977 (4)0.0133 (6)
B0.5149 (4)−0.3045 (3)0.1254 (2)0.0061 (3)
O10.3101 (2)0.24622 (18)0.00179 (14)0.0077 (2)
O20.2330 (2)−0.26155 (19)0.11029 (14)0.0086 (3)
O30.1280 (2)−0.08686 (19)−0.23947 (13)0.0086 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sc0.0050 (2)0.0054 (2)0.0049 (2)−0.00002 (13)0.00011 (14)0.00009 (12)
Li10.015 (2)0.012 (2)0.035 (3)0.0000 (15)−0.008 (2)−0.0062 (17)
Li20.0119 (13)0.0182 (15)0.0098 (13)−0.0025 (11)−0.0018 (10)0.0015 (10)
B0.0074 (7)0.0042 (7)0.0067 (7)−0.0009 (6)0.0000 (6)−0.0014 (6)
O10.0065 (5)0.0095 (5)0.0070 (5)−0.0013 (4)0.0004 (4)0.0005 (4)
O20.0060 (5)0.0099 (5)0.0099 (6)0.0013 (4)0.0000 (4)0.0012 (4)
O30.0084 (5)0.0102 (6)0.0071 (5)0.0006 (4)−0.0009 (4)−0.0023 (4)

Geometric parameters (Å, °)

Sc—O12.0854 (12)Li2—O1x1.896 (3)
Sc—O1i2.0854 (12)Li2—O21.946 (3)
Sc—O2i2.1101 (12)Li2—O3xi1.983 (3)
Sc—O22.1101 (12)Li2—O3i2.137 (3)
Sc—O3i2.1197 (13)Li2—Bviii2.659 (3)
Sc—O32.1197 (13)Li2—Bxi2.697 (3)
Sc—Li2i2.855 (3)Li2—Bxii2.733 (4)
Sc—Li22.855 (3)Li2—Scix3.226 (3)
Sc—Li1ii2.9768 (11)Li2—Li1iii3.234 (3)
Sc—Li12.9768 (11)Li2—Scx3.297 (3)
Sc—Li2iii3.226 (3)B—O21.376 (2)
Sc—Li2iv3.226 (3)B—O3xiii1.384 (2)
Li1—O22.0107 (12)B—O1xiv1.385 (2)
Li1—O2v2.0107 (12)B—Li2xv2.659 (3)
Li1—O1vi2.1173 (12)B—Li2iv2.697 (3)
Li1—O1i2.1173 (12)B—Li2x2.733 (4)
Li1—Bvii2.8008 (18)B—Li1xv2.8008 (18)
Li1—Bviii2.8008 (18)O1—Bxiv1.385 (2)
Li1—Li2v2.847 (3)O1—Li2xii1.896 (3)
Li1—Li22.847 (3)O1—Li1ii2.1173 (12)
Li1—Scvi2.9768 (11)O3—Bxvi1.384 (2)
Li1—Li2ix3.234 (3)O3—Li2iv1.983 (3)
Li1—Li2iv3.234 (3)O3—Li2i2.137 (3)
O1—Sc—O1i180.00 (4)O1x—Li2—O3i109.04 (14)
O1—Sc—O2i81.73 (5)O2—Li2—O3i90.58 (12)
O1i—Sc—O2i98.27 (5)O3xi—Li2—O3i101.95 (13)
O1—Sc—O298.27 (5)O2—B—O3xiii122.09 (14)
O1i—Sc—O281.73 (5)O2—B—O1xiv119.13 (14)
O2i—Sc—O2180.00 (8)O3xiii—B—O1xiv118.72 (14)
O1—Sc—O3i92.04 (4)Bxiv—O1—Li2xii109.58 (13)
O1i—Sc—O3i87.96 (4)Bxiv—O1—Sc127.37 (10)
O2i—Sc—O3i93.23 (5)Li2xii—O1—Sc111.74 (11)
O2—Sc—O3i86.77 (5)Bxiv—O1—Li1ii104.23 (9)
O1—Sc—O387.96 (4)Li2xii—O1—Li1ii110.73 (10)
O1i—Sc—O392.04 (4)Sc—O1—Li1ii90.19 (5)
O2i—Sc—O386.77 (5)B—O2—Li2122.67 (13)
O2—Sc—O393.23 (5)B—O2—Li1116.47 (10)
O3i—Sc—O3180.00 (5)Li2—O2—Li192.02 (10)
O2—Li1—O2v180.00 (6)B—O2—Sc133.37 (10)
O2—Li1—O1vi96.68 (5)Li2—O2—Sc89.39 (10)
O2v—Li1—O1vi83.32 (5)Li1—O2—Sc92.47 (5)
O2—Li1—O1i83.32 (5)Bxvi—O3—Li2iv102.89 (13)
O2v—Li1—O1i96.68 (5)Bxvi—O3—Sc137.30 (10)
O1vi—Li1—O1i180Li2iv—O3—Sc103.64 (10)
O1x—Li2—O2111.51 (16)Bxvi—O3—Li2i99.62 (12)
O1x—Li2—O3xi124.23 (16)Li2iv—O3—Li2i135.08 (11)
O2—Li2—O3xi113.33 (15)Sc—O3—Li2i84.24 (9)

Symmetry codes: (i) −x, −y, −z; (ii) x, y+1, z; (iii) −x−1/2, y+1/2, −z+1/2; (iv) x+1/2, −y−1/2, z−1/2; (v) −x, −y−1, −z; (vi) x, y−1, z; (vii) −x+1, −y−1, −z; (viii) x−1, y, z; (ix) −x−1/2, y−1/2, −z+1/2; (x) −x+1/2, y−1/2, −z+1/2; (xi) x−1/2, −y−1/2, z+1/2; (xii) −x+1/2, y+1/2, −z+1/2; (xiii) x+1/2, −y−1/2, z+1/2; (xiv) −x+1, −y, −z; (xv) x+1, y, z; (xvi) x−1/2, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2180).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Becker, P. & Held, P. (2001). Z. Krist. New Cryst. Struct.216, 35..
  • Brandenburg, K. (2004). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Rigaku (2000). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, Y., Ye, N. & Keszler, D. A. (2006). Acta Cryst. E62, i266–i268.
  • Zobetz, E. (1982). Z. Kristallogr.160, 81–92.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography