PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 June 1; 64(Pt 6): o1070–o1071.
Published online 2008 May 14. doi:  10.1107/S1600536808013585
PMCID: PMC2961341

Methyl 3-(2-chlorophenyl)-2-(1H-indol-3-ylmethyl)-5-[1-(4-methoxyphenyl)-4-oxo-3-phenylazetidin-2-yl]-4-nitropyr­rolidine-2-carboxylate

Abstract

In the mol­ecule of the title compound, C37H33ClN4O6, the four-membered β-lactam ring is essentially planar and is oriented at dihedral angles of 30.0 (1), 76.3 (1) and 30.9 (1)° with respect to the methoxy­phenyl ring, the phenyl ring and the indole unit, respectively. The pyrrolidine ring adopts a twist conformation. Intra­molecular C—H(...)Cl and C—H(...)O hydrogen bonds result in the formation of two five- and one six-membered rings. In the crystal structure, inter­molecular C—H(...)O and N—H(...)O hydrogen bonds link the mol­ecules. A weak π(...)π inter­action between the pyrrole rings further stabilizes the structure, with a centroid–centroid distance of 3.806 (2) Å.

Related literature

For general background, see: Bruggink (2001 [triangle]); Morin & Gorman (1982 [triangle]); Katritzky et al. (1996 [triangle]); Georg (1993 [triangle]); Coyne et al. (2007 [triangle]); Dobrowolski et al. (2004 [triangle]); Cha et al. (2006 [triangle]). For related literature, see: Bhaskaran et al. (2006 [triangle]); Kamala et al. (2008 [triangle]); Ülkü et al. (1997 [triangle]). For ring puckering parameters, see: Cremer & Pople (1975 [triangle]). For asymmetry parameters, see: Nardelli (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o1070-scheme1.jpg

Experimental

Crystal data

  • C37H33ClN4O6
  • M r = 665.12
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o1070-efi1.jpg
  • a = 10.399 (3) Å
  • b = 12.500 (3) Å
  • c = 14.211 (3) Å
  • α = 93.766 (6)°
  • β = 99.962 (6)°
  • γ = 114.066 (5)°
  • V = 1642.1 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 293 (2) K
  • 0.30 × 0.20 × 0.16 mm

Data collection

  • Bruker Kappa APEX2 CCD diffractometer
  • Absorption correction: multi-scan (Blessing, 1995 [triangle]) T min = 0.951, T max = 0.973
  • 25481 measured reflections
  • 5563 independent reflections
  • 3770 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.317
  • S = 1.10
  • 5563 reflections
  • 433 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013585/hk2460sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013585/hk2460Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions. SN thanks SRM management, India, for their support.

supplementary crystallographic information

Comment

β-Lactams are one of the best known and most extensively studied class of compounds due to their biological activity (Bruggink, 2001; Morin & Gorman, 1982; Katritzky et al., 1996; Georg, 1993). The β-lactam class of drugs have revolutionized treatment in medicine (Coyne et al., 2007). In the late 1970's and early 1980's, the first class of the monocyclic β-lactam antibacterial agents were found in natural sources (Dobrowolski et al., 2004). All β-lactams are based on a β-lactam ring responsible for the antibacterial activity and variable side chains that account for the major differences in their chemical and pharmocological properties (Cha et al., 2006). We report herein the crystal structure of the title compound, (I).

In the title compound, (I), (Fig. 1) the four-membered β-lactam ring A (N4/C14-C16) is nearly planar, with a maximum deviation of 0.038 (4) Å for atom N1. The C14-C15 [1.581 (4) Å] and C15-C16 [1.523 (5) Å] bonds agree with those observed in similar structures (Bhaskaran et al., 2006; Kamala et al., 2008). The C14-C15-C16 [84.6 (2)°] bond angle is comparable to the corresponding value [87.0 (3)°)] in a related structure (Ülkü et al., 1997). The sum of the bond angles around atom N4 [355.6 (3)°] indicates sp2 hybridization. The planar rings A, B (C17-C22) and C (C24-C29) are oriented at dihedral angles of A/B = 30.0 (1)°, A/C = 76.3 (1)° and B/C = 50.2 (1)°. The planar indole moiety is oriented with respect to rings A, C and D (C30-C35) at dihedral angles of 30.9 (1)°, 73.0 (1)° and 70.7 (1)°, respectively. The pyrrolidine ring E (N2/C10-C13) adopts a twisted conformation, with asymmetry [ΔC2 (C11) = 0.011 (1), ΔCs (C13) = 0.085 (2)] (Nardelli, 1995) and puckering [q2 = 0.402 (3) Å and [var phi]= -21.1 (4)°] (Cremer & Pople, 1975) parameters. Atom N2 deviates from the mean plane of (N2/C10-C12) by 0.553 (7) Å.

The intramolecular C-H···Cl and C-H···O hydrogen bonds (Table 1) result in the formation of two five- and one six-membered rings: F (O3/N3/C11/H11A/C12), G (Cl1/C11/H11/C30/C39) and H (O5/N4/C16/C17/C22/H22), respectively. In the crystal structure, intermolecular C-H···O and N-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. A weak π—π interaction between (N1/C1-C3/C8) rings at x, y, z and 1 - x, 1 - y, 1 - z further stabilize the structure, with a centroid-centroid distance of 3.806 (2) Å.

Experimental

For the preparation of the title compound, β-Lactam aldehyde (1.0 mol) was treated with tryptophan methylester hydrochloride (1.0 mol) in the presence of Et3N (2.5 mol) and anhydrous MgSO4 (2.0 g) in dry dichloromethane (10 ml) at room temperature for 12 h to give the imine. The imine was washed with water and dried over Na2SO4. The solvent was evaporated under vacuum. The imine (1.0 mol) was then strirred with silver (I) acetate and p-chloro nitrostyrene (1.0 mol) in the presence of Et3N (1.2 mol) and molecular sieves in dry toluene (30 ml) at room temperature for 12 h. The reaction mixture was filtered through a plug celite. The solvent was evaporated under reduced pressure and the residue was subjected to column chromatography on silica gel (100-200 mesh), with hexane-ethylacetate (7:3) as eluent to give the product. The compound was recrystallized from ethylacetate.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
Fig. 2.
A partial packing diagram for (I). Hydrogen bonds are shown as dashed lines. H atoms not involed in hydrogen bondings have been omitted for clarity.

Crystal data

C37H33ClN4O6Z = 2
Mr = 665.12F000 = 696
Triclinic, P1Dx = 1.345 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 10.399 (3) ÅCell parameters from 8315 reflections
b = 12.500 (3) Åθ = 2.5–31.6º
c = 14.211 (3) ŵ = 0.17 mm1
α = 93.766 (6)ºT = 293 (2) K
β = 99.962 (6)ºPrism, colourless
γ = 114.066 (5)º0.30 × 0.20 × 0.16 mm
V = 1642.1 (7) Å3

Data collection

Bruker KAPPA APEX2 CCD diffractometer5563 independent reflections
Radiation source: fine-focus sealed tube3770 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.057
T = 294(2) Kθmax = 25.0º
ω and [var phi] scansθmin = 1.5º
Absorption correction: multi-scan(Blessing, 1995)h = −12→12
Tmin = 0.951, Tmax = 0.973k = −14→14
25481 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.317  w = 1/[σ2(Fo2) + (0.2P)2] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
5563 reflectionsΔρmax = 0.51 e Å3
433 parametersΔρmin = −0.64 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.27147 (16)0.62053 (13)0.03791 (11)0.0912 (5)
O10.4619 (3)0.3522 (3)0.1048 (2)0.0620 (8)
O20.4973 (3)0.5325 (3)0.16978 (19)0.0549 (7)
O30.1219 (3)0.2147 (3)−0.0280 (2)0.0690 (9)
O4−0.0986 (3)0.1137 (3)−0.02304 (19)0.0646 (8)
O5−0.1691 (3)−0.1217 (3)0.3043 (3)0.0861 (12)
O60.4562 (3)−0.1339 (3)0.4179 (2)0.0647 (9)
N10.5503 (4)0.3211 (3)0.4608 (2)0.0500 (8)
H1A0.56020.26740.49210.060*
N20.2433 (3)0.2437 (2)0.19400 (18)0.0340 (6)
H20.29430.20390.19760.041*
N30.0198 (3)0.1926 (3)0.0102 (2)0.0441 (8)
N40.0375 (3)0.0089 (2)0.2561 (2)0.0406 (7)
C10.4247 (4)0.3105 (3)0.4029 (2)0.0452 (9)
H10.33720.24350.39140.054*
C20.4455 (3)0.4115 (3)0.3646 (2)0.0344 (7)
C30.5947 (3)0.4900 (3)0.4004 (2)0.0355 (8)
C40.6834 (4)0.6067 (3)0.3897 (2)0.0464 (9)
H40.64650.64880.35040.056*
C50.8251 (4)0.6574 (4)0.4383 (3)0.0614 (11)
H50.88380.73470.43200.074*
C60.8836 (4)0.5963 (5)0.4969 (3)0.0669 (13)
H60.98020.63350.52890.080*
C70.8008 (4)0.4815 (5)0.5083 (3)0.0592 (12)
H70.84020.44000.54650.071*
C80.6570 (4)0.4301 (3)0.4609 (2)0.0411 (8)
C90.3323 (3)0.4348 (3)0.3002 (2)0.0340 (7)
H9A0.36650.51940.29990.041*
H9B0.24570.40790.32600.041*
C100.2943 (3)0.3712 (3)0.1948 (2)0.0310 (7)
C110.1669 (3)0.3868 (3)0.1245 (2)0.0335 (7)
H110.19570.40330.06300.040*
C120.0405 (3)0.2628 (3)0.1066 (2)0.0331 (7)
H12−0.04900.26780.11390.040*
C130.0886 (3)0.1980 (3)0.1857 (2)0.0315 (7)
H130.07320.22680.24680.038*
C140.0125 (3)0.0649 (3)0.1707 (2)0.0357 (7)
H140.03090.02990.11370.043*
C15−0.1531 (3)0.0061 (3)0.1733 (3)0.0458 (9)
H15−0.2101−0.05320.11590.055*
C16−0.1057 (4)−0.0505 (3)0.2560 (3)0.0519 (10)
C170.1534 (3)−0.0169 (3)0.2985 (2)0.0378 (8)
C180.2642 (3)−0.0060 (3)0.2526 (2)0.0393 (8)
H180.26850.02560.19520.047*
C190.3685 (3)−0.0420 (3)0.2917 (3)0.0430 (8)
H190.4434−0.03370.26100.052*
C200.3619 (4)−0.0899 (3)0.3756 (3)0.0460 (9)
C210.2550 (4)−0.0962 (4)0.4239 (3)0.0544 (10)
H210.2533−0.12500.48260.065*
C220.1513 (4)−0.0600 (4)0.3857 (3)0.0509 (10)
H220.0796−0.06450.41850.061*
C230.5611 (5)−0.1357 (5)0.3669 (4)0.0807 (16)
H23A0.6198−0.16830.40290.121*
H23B0.6208−0.05640.35850.121*
H23C0.5137−0.18380.30480.121*
C24−0.2264 (3)0.0835 (3)0.1965 (3)0.0418 (9)
C25−0.1948 (4)0.1455 (3)0.2876 (3)0.0461 (9)
H25−0.12760.13890.33650.055*
C26−0.2613 (4)0.2174 (4)0.3075 (3)0.0555 (10)
H26−0.23880.25820.36960.067*
C27−0.3605 (4)0.2289 (4)0.2362 (3)0.0605 (11)
H27−0.40520.27740.24950.073*
C28−0.3929 (4)0.1674 (4)0.1442 (3)0.0618 (12)
H28−0.45910.17520.09530.074*
C29−0.3278 (4)0.0951 (4)0.1250 (3)0.0537 (10)
H29−0.35170.05310.06320.064*
C300.1230 (3)0.4815 (3)0.1585 (2)0.0386 (8)
C310.0321 (4)0.4623 (4)0.2234 (3)0.0473 (9)
H310.00030.39060.24720.057*
C32−0.0116 (5)0.5464 (4)0.2530 (3)0.0664 (13)
H32−0.07310.53070.29570.080*
C330.0349 (7)0.6529 (5)0.2198 (4)0.0842 (18)
H330.00620.71010.24060.101*
C340.1243 (6)0.6751 (4)0.1557 (4)0.0775 (16)
H340.15640.74770.13330.093*
C350.1674 (4)0.5889 (3)0.1239 (3)0.0537 (10)
C360.4283 (3)0.4159 (3)0.1513 (2)0.0384 (8)
C370.6263 (4)0.5862 (5)0.1315 (3)0.0768 (15)
H37A0.66780.67080.14910.115*
H37B0.60140.56640.06230.115*
H37C0.69500.55700.15770.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1027 (10)0.0749 (10)0.1001 (11)0.0317 (8)0.0319 (8)0.0577 (8)
O10.0716 (17)0.076 (2)0.0706 (19)0.0510 (17)0.0408 (14)0.0291 (16)
O20.0497 (14)0.0547 (19)0.0521 (16)0.0091 (13)0.0214 (11)0.0149 (13)
O30.081 (2)0.083 (2)0.0504 (17)0.0411 (18)0.0232 (15)−0.0032 (16)
O40.0702 (18)0.060 (2)0.0491 (16)0.0255 (16)−0.0112 (13)−0.0109 (14)
O50.0532 (16)0.084 (2)0.149 (3)0.0374 (16)0.0485 (19)0.078 (2)
O60.0597 (15)0.083 (2)0.079 (2)0.0484 (16)0.0245 (14)0.0487 (17)
N10.0702 (19)0.057 (2)0.0369 (16)0.0401 (18)0.0100 (14)0.0201 (15)
N20.0349 (12)0.0346 (16)0.0398 (15)0.0216 (12)0.0076 (10)0.0116 (12)
N30.0589 (18)0.0459 (19)0.0339 (16)0.0323 (16)0.0013 (13)0.0045 (14)
N40.0355 (13)0.0350 (17)0.0586 (18)0.0193 (12)0.0137 (12)0.0177 (14)
C10.0529 (18)0.047 (2)0.0362 (18)0.0206 (17)0.0092 (14)0.0129 (17)
C20.0423 (16)0.040 (2)0.0277 (16)0.0230 (15)0.0104 (12)0.0111 (14)
C30.0443 (16)0.044 (2)0.0240 (15)0.0256 (15)0.0068 (12)0.0030 (14)
C40.0500 (18)0.048 (2)0.0393 (19)0.0186 (17)0.0110 (15)0.0044 (17)
C50.049 (2)0.058 (3)0.061 (3)0.0101 (19)0.0095 (17)−0.003 (2)
C60.0400 (18)0.100 (4)0.050 (2)0.025 (2)−0.0003 (16)−0.003 (2)
C70.058 (2)0.098 (4)0.037 (2)0.053 (3)0.0016 (16)0.006 (2)
C80.0518 (18)0.050 (2)0.0278 (16)0.0287 (18)0.0060 (13)0.0033 (15)
C90.0360 (14)0.0389 (19)0.0332 (17)0.0213 (14)0.0092 (12)0.0071 (14)
C100.0329 (14)0.0348 (19)0.0317 (16)0.0195 (13)0.0082 (11)0.0103 (14)
C110.0425 (15)0.0373 (19)0.0281 (16)0.0229 (14)0.0091 (12)0.0115 (14)
C120.0384 (15)0.0376 (19)0.0307 (16)0.0239 (14)0.0069 (12)0.0046 (14)
C130.0357 (14)0.0324 (18)0.0315 (16)0.0196 (13)0.0070 (11)0.0055 (13)
C140.0412 (15)0.0311 (18)0.0406 (18)0.0221 (14)0.0070 (12)0.0050 (14)
C150.0375 (16)0.039 (2)0.064 (2)0.0211 (15)0.0078 (14)0.0087 (17)
C160.0438 (18)0.042 (2)0.080 (3)0.0235 (17)0.0197 (18)0.025 (2)
C170.0420 (16)0.0296 (18)0.0468 (19)0.0188 (14)0.0109 (14)0.0120 (15)
C180.0402 (15)0.037 (2)0.0451 (19)0.0187 (15)0.0109 (13)0.0159 (16)
C190.0431 (17)0.043 (2)0.051 (2)0.0214 (16)0.0180 (14)0.0179 (17)
C200.0457 (17)0.044 (2)0.054 (2)0.0232 (16)0.0111 (15)0.0234 (18)
C210.060 (2)0.070 (3)0.049 (2)0.037 (2)0.0207 (17)0.033 (2)
C220.0537 (19)0.061 (3)0.052 (2)0.0312 (19)0.0237 (16)0.0249 (19)
C230.070 (3)0.103 (4)0.116 (4)0.066 (3)0.043 (3)0.063 (3)
C240.0356 (15)0.038 (2)0.057 (2)0.0193 (14)0.0119 (14)0.0158 (17)
C250.0439 (17)0.047 (2)0.050 (2)0.0210 (16)0.0104 (15)0.0155 (18)
C260.057 (2)0.062 (3)0.060 (2)0.032 (2)0.0248 (18)0.017 (2)
C270.059 (2)0.064 (3)0.085 (3)0.044 (2)0.032 (2)0.027 (2)
C280.057 (2)0.080 (3)0.071 (3)0.047 (2)0.0166 (19)0.031 (2)
C290.0485 (18)0.064 (3)0.056 (2)0.0327 (19)0.0065 (16)0.013 (2)
C300.0435 (16)0.041 (2)0.0355 (17)0.0263 (15)−0.0031 (13)0.0077 (15)
C310.057 (2)0.052 (2)0.045 (2)0.0381 (19)0.0046 (15)0.0036 (17)
C320.074 (3)0.080 (3)0.059 (3)0.056 (3)−0.004 (2)−0.008 (2)
C330.106 (4)0.064 (3)0.090 (4)0.067 (3)−0.025 (3)−0.019 (3)
C340.093 (3)0.041 (3)0.093 (4)0.039 (3)−0.020 (3)0.007 (2)
C350.057 (2)0.037 (2)0.062 (2)0.0219 (17)−0.0066 (17)0.0126 (18)
C360.0404 (16)0.053 (2)0.0320 (17)0.0278 (17)0.0102 (13)0.0177 (16)
C370.052 (2)0.097 (4)0.061 (3)0.004 (2)0.024 (2)0.027 (3)

Geometric parameters (Å, °)

N1—H1A0.8600C17—C181.384 (5)
N2—H20.8600C17—N41.418 (4)
N3—O41.208 (4)C18—C191.382 (4)
N3—O31.215 (4)C18—H180.9300
C1—C21.358 (5)C19—C201.368 (5)
C1—N11.369 (4)C19—H190.9300
C1—H10.9300C20—O61.380 (4)
C2—C31.431 (5)C20—C211.383 (5)
C2—C91.501 (4)C21—C221.375 (5)
C3—C41.408 (5)C21—H210.9300
C3—C81.417 (4)C22—H220.9300
C4—C51.371 (5)C23—O61.417 (5)
C4—H40.9300C23—H23A0.9600
C5—C61.390 (7)C23—H23B0.9600
C5—H50.9300C23—H23C0.9600
C6—C71.377 (7)C24—C251.378 (5)
C6—H60.9300C24—C291.392 (4)
C7—C81.383 (5)C25—C261.380 (5)
C7—H70.9300C25—H250.9300
C8—N11.362 (5)C26—C271.376 (5)
C9—C101.553 (4)C26—H260.9300
C9—H9A0.9700C27—C281.384 (6)
C9—H9B0.9700C27—H270.9300
C10—N21.459 (4)C28—C291.373 (5)
C10—C361.531 (4)C28—H280.9300
C10—C111.603 (3)C29—H290.9300
C11—C301.511 (4)C30—C351.385 (5)
C11—C121.538 (5)C30—C311.395 (5)
C11—H110.9800C31—C321.374 (5)
C12—N31.511 (4)C31—H310.9300
C12—C131.558 (4)C32—C331.365 (8)
C12—H120.9800C32—H320.9300
C13—N21.451 (4)C33—C341.374 (8)
C13—C141.503 (4)C33—H330.9300
C13—H130.9800C34—C351.402 (6)
C14—N41.478 (4)C34—H340.9300
C14—C151.581 (4)C35—Cl11.730 (5)
C14—H140.9800C36—O11.197 (4)
C15—C241.507 (4)C36—O21.319 (4)
C15—C161.523 (5)C37—O21.454 (4)
C15—H150.9800C37—H37A0.9600
C16—O51.206 (5)C37—H37B0.9600
C16—N41.365 (4)C37—H37C0.9600
C17—C221.383 (5)
C36—O2—C37116.4 (3)C16—C15—C1484.6 (2)
C20—O6—C23116.9 (3)C24—C15—H15111.2
C8—N1—C1109.2 (3)C16—C15—H15111.2
C8—N1—H1A125.4C14—C15—H15111.2
C1—N1—H1A125.4O5—C16—N4132.5 (3)
C13—N2—C10105.6 (2)O5—C16—C15133.9 (3)
C13—N2—H2127.2N4—C16—C1593.6 (3)
C10—N2—H2127.2C22—C17—C18119.3 (3)
O4—N3—O3123.6 (3)C22—C17—N4118.8 (3)
O4—N3—C12116.9 (3)C18—C17—N4121.8 (3)
O3—N3—C12119.5 (3)C19—C18—C17120.2 (3)
C16—N4—C17128.4 (3)C19—C18—H18119.9
C16—N4—C1494.5 (3)C17—C18—H18119.9
C17—N4—C14132.7 (3)C20—C19—C18120.1 (3)
C2—C1—N1110.6 (3)C20—C19—H19119.9
C2—C1—H1124.7C18—C19—H19119.9
N1—C1—H1124.7C19—C20—O6124.7 (3)
C1—C2—C3106.0 (3)C19—C20—C21119.7 (3)
C1—C2—C9126.1 (3)O6—C20—C21115.6 (3)
C3—C2—C9127.9 (3)C22—C21—C20120.4 (3)
C4—C3—C8118.1 (3)C22—C21—H21119.8
C4—C3—C2134.6 (3)C20—C21—H21119.8
C8—C3—C2107.3 (3)C21—C22—C17120.0 (3)
C5—C4—C3118.9 (4)C21—C22—H22120.0
C5—C4—H4120.6C17—C22—H22120.0
C3—C4—H4120.6O6—C23—H23A109.5
C4—C5—C6121.8 (4)O6—C23—H23B109.5
C4—C5—H5119.1H23A—C23—H23B109.5
C6—C5—H5119.1O6—C23—H23C109.5
C7—C6—C5121.1 (4)H23A—C23—H23C109.5
C7—C6—H6119.5H23B—C23—H23C109.5
C5—C6—H6119.5C25—C24—C29118.1 (3)
C6—C7—C8117.7 (3)C25—C24—C15121.7 (3)
C6—C7—H7121.2C29—C24—C15120.3 (3)
C8—C7—H7121.2C24—C25—C26121.1 (3)
N1—C8—C7130.5 (3)C24—C25—H25119.4
N1—C8—C3107.0 (3)C26—C25—H25119.4
C7—C8—C3122.5 (4)C27—C26—C25120.4 (4)
C2—C9—C10112.3 (2)C27—C26—H26119.8
C2—C9—H9A109.1C25—C26—H26119.8
C10—C9—H9A109.1C26—C27—C28119.1 (3)
C2—C9—H9B109.1C26—C27—H27120.4
C10—C9—H9B109.1C28—C27—H27120.4
H9A—C9—H9B107.9C29—C28—C27120.3 (3)
N2—C10—C36108.6 (2)C29—C28—H28119.8
N2—C10—C9109.8 (2)C27—C28—H28119.8
C36—C10—C9110.0 (2)C28—C29—C24121.0 (4)
N2—C10—C11105.2 (2)C28—C29—H29119.5
C36—C10—C11108.7 (2)C24—C29—H29119.5
C9—C10—C11114.2 (2)C35—C30—C31117.5 (3)
C30—C11—C12111.5 (2)C35—C30—C11121.3 (3)
C30—C11—C10117.8 (2)C31—C30—C11121.2 (3)
C12—C11—C10103.5 (2)C32—C31—C30121.9 (4)
C30—C11—H11107.8C32—C31—H31119.1
C12—C11—H11107.8C30—C31—H31119.1
C10—C11—H11107.8C33—C32—C31120.2 (5)
N3—C12—C11113.1 (3)C33—C32—H32119.9
N3—C12—C13106.7 (2)C31—C32—H32119.9
C11—C12—C13103.8 (2)C32—C33—C34119.7 (4)
N3—C12—H12111.0C32—C33—H33120.2
C11—C12—H12111.0C34—C33—H33120.2
C13—C12—H12111.0C33—C34—C35120.4 (4)
N2—C13—C14113.7 (2)C33—C34—H34119.8
N2—C13—C12103.5 (2)C35—C34—H34119.8
C14—C13—C12117.3 (2)C30—C35—C34120.3 (4)
N2—C13—H13107.3C30—C35—Cl1122.1 (3)
C14—C13—H13107.3C34—C35—Cl1117.5 (4)
C12—C13—H13107.3O1—C36—O2125.4 (3)
N4—C14—C13115.3 (3)O1—C36—C10123.6 (3)
N4—C14—C1587.1 (2)O2—C36—C10111.0 (3)
C13—C14—C15117.8 (2)O2—C37—H37A109.5
N4—C14—H14111.5O2—C37—H37B109.5
C13—C14—H14111.5H37A—C37—H37B109.5
C15—C14—H14111.5O2—C37—H37C109.5
C24—C15—C16116.4 (3)H37A—C37—H37C109.5
C24—C15—C14119.7 (3)H37B—C37—H37C109.5
N1—C1—C2—C30.6 (4)C16—C15—C24—C29−150.9 (3)
N1—C1—C2—C9−178.0 (3)C14—C15—C24—C29109.9 (4)
C1—C2—C3—C4−178.8 (3)C29—C24—C25—C26−0.2 (5)
C9—C2—C3—C4−0.3 (6)C15—C24—C25—C26179.1 (3)
C1—C2—C3—C8−0.5 (4)C24—C25—C26—C27−0.3 (6)
C9—C2—C3—C8178.1 (3)C25—C26—C27—C280.1 (6)
C8—C3—C4—C5−0.3 (5)C26—C27—C28—C290.6 (6)
C2—C3—C4—C5177.9 (4)C27—C28—C29—C24−1.1 (6)
C3—C4—C5—C60.6 (6)C25—C24—C29—C280.9 (6)
C4—C5—C6—C70.1 (7)C15—C24—C29—C28−178.4 (4)
C5—C6—C7—C8−1.2 (6)C12—C11—C30—C35−138.3 (3)
C6—C7—C8—N1−178.1 (4)C10—C11—C30—C35102.2 (3)
C6—C7—C8—C31.5 (5)C12—C11—C30—C3139.4 (4)
C4—C3—C8—N1178.9 (3)C10—C11—C30—C31−80.1 (4)
C2—C3—C8—N10.2 (3)C35—C30—C31—C32−0.5 (5)
C4—C3—C8—C7−0.7 (5)C11—C30—C31—C32−178.3 (3)
C2—C3—C8—C7−179.4 (3)C30—C31—C32—C33−0.7 (6)
C1—C2—C9—C10−76.9 (4)C31—C32—C33—C340.8 (7)
C3—C2—C9—C10104.8 (4)C32—C33—C34—C350.3 (7)
C2—C9—C10—N258.5 (3)C31—C30—C35—C341.6 (5)
C2—C9—C10—C36−61.0 (3)C11—C30—C35—C34179.4 (3)
C2—C9—C10—C11176.5 (2)C31—C30—C35—Cl1−176.2 (2)
N2—C10—C11—C30134.8 (3)C11—C30—C35—Cl11.6 (5)
C36—C10—C11—C30−109.0 (3)C33—C34—C35—C30−1.5 (6)
C9—C10—C11—C3014.2 (4)C33—C34—C35—Cl1176.4 (4)
N2—C10—C11—C1211.2 (3)N2—C10—C36—O116.0 (4)
C36—C10—C11—C12127.4 (3)C9—C10—C36—O1136.2 (3)
C9—C10—C11—C12−109.4 (3)C11—C10—C36—O1−98.0 (3)
C30—C11—C12—N3131.4 (2)N2—C10—C36—O2−165.9 (2)
C10—C11—C12—N3−101.0 (2)C9—C10—C36—O2−45.6 (3)
C30—C11—C12—C13−113.4 (3)C11—C10—C36—O280.1 (3)
C10—C11—C12—C1314.3 (3)C7—C8—N1—C1179.7 (4)
N3—C12—C13—N284.1 (3)C3—C8—N1—C10.1 (4)
C11—C12—C13—N2−35.6 (3)C2—C1—N1—C8−0.4 (4)
N3—C12—C13—C14−42.0 (3)C14—C13—N2—C10172.5 (2)
C11—C12—C13—C14−161.7 (2)C12—C13—N2—C1044.1 (3)
N2—C13—C14—N472.2 (3)C36—C10—N2—C13−150.8 (2)
C12—C13—C14—N4−166.9 (2)C9—C10—N2—C1388.8 (2)
N2—C13—C14—C15172.8 (3)C11—C10—N2—C13−34.6 (3)
C12—C13—C14—C15−66.3 (4)C11—C12—N3—O4−157.2 (3)
N4—C14—C15—C24113.5 (3)C13—C12—N3—O489.3 (3)
C13—C14—C15—C24−3.7 (5)C11—C12—N3—O325.3 (4)
N4—C14—C15—C16−3.9 (3)C13—C12—N3—O3−88.2 (3)
C13—C14—C15—C16−121.1 (3)O5—C16—N4—C1716.9 (7)
C24—C15—C16—O563.8 (6)C15—C16—N4—C17−163.0 (3)
C14—C15—C16—O5−175.6 (5)O5—C16—N4—C14175.3 (5)
C24—C15—C16—N4−116.3 (3)C15—C16—N4—C14−4.5 (3)
C14—C15—C16—N44.2 (3)C22—C17—N4—C16−36.5 (5)
C22—C17—C18—C192.4 (5)C18—C17—N4—C16140.0 (4)
N4—C17—C18—C19−174.1 (3)C22—C17—N4—C14173.4 (3)
C17—C18—C19—C200.8 (6)C18—C17—N4—C14−10.1 (6)
C18—C19—C20—O6176.6 (4)C13—C14—N4—C16123.8 (3)
C18—C19—C20—C21−3.5 (6)C15—C14—N4—C164.4 (3)
C19—C20—C21—C223.2 (6)C13—C14—N4—C17−79.3 (4)
O6—C20—C21—C22−176.9 (4)C15—C14—N4—C17161.3 (4)
C20—C21—C22—C17−0.1 (7)O1—C36—O2—C37−1.3 (5)
C18—C17—C22—C21−2.7 (6)C10—C36—O2—C37−179.4 (3)
N4—C17—C22—C21173.9 (4)C19—C20—O6—C23−4.1 (6)
C16—C15—C24—C2529.9 (5)C21—C20—O6—C23176.0 (4)
C14—C15—C24—C25−69.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11···Cl10.982.573.095 (4)114
C11—H11···O30.982.372.786 (4)105
C22—H22···O50.932.593.080 (6)113
C14—H14···O4i0.982.533.443 (5)154
C34—H34···O4ii0.932.593.414 (6)148
N1—H1A···O6iii0.862.142.982 (5)167

Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2460).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bhaskaran, S., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Arumugam, N. & Raghunathan, R. (2006). Anal. Sci.22, x57–x58.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Bruggink, A. (2001). Synthesis of β-Lactam Antibiotics, Chemistry, Biocatalysis and Process Integration, edited by A. Bruggink. Dordrecht: Kluwer.
  • Bruker (2004). APEX2, XPREP and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cha, J. M., Yang, S. & Carlson, K. H. (2006). J. Chromatogr. A, 1115, 46–57. [PubMed]
  • Coyne, A. G., Muller-Bunz, H. & Guiry, P. J. (2007). Tetrahedron Asymmetry, 18, 199–207.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Dobrowolski, J. C., Sadlej, J. & Mazurek, A. P. (2004). J. Mol. Struct. THEOCHEM, 684, 181–186.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Georg, G. I. (1993). The Organic Chemistry of β-Lactams, edited by G. I. Georg. New York: VCH.
  • Kamala, E. T. S., Nirmala, S., Sudha, L., Arumugam, N. & Raghunathan, R. (2008). Acta Cryst. E64, o716–o717. [PMC free article] [PubMed]
  • Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, Vol. 1b, chs. 1.18–1.20. New York: Elsevier.
  • Morin, M. B. & Gorman, M. (1982). Chemistry and Biology of β-Lactam Antibiotics, edited by M. B. Morin & M. Gorman, pp. 1– 3. New York: Academic Press.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Ülkü, D., Ercan, F. & Güner, V. (1997). Acta Cryst. C53, 1945–1947.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography