PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): m683.
Published online 2008 April 18. doi:  10.1107/S1600536808009938
PMCID: PMC2961340

mer-Triaqua­(1,10-phenanthroline-κ2 N,N′)(sulfato-κO)magnesium(II)

Abstract

In the title compound, [Mg(SO4)(C12H8N2)(H2O)3], the MgII centre exhibits a slightly distorted octa­hedral coordination environment defined by two N atoms from a 1,10-phenanthroline mol­ecule, one O atom from a sulfate dianion and three meridionally arranged O atoms from coordinated water mol­ecules. The crystal structure involves intra- and intermolecular O—H(...)O hydrogen bonds.

Related literature

For copper(II), zinc(II) and cadmium(II) complexes of phenanthroline, see: Xu et al. (2003 [triangle]); Zhang et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m683-scheme1.jpg

Experimental

Crystal data

  • [Mg(SO4)(C12H8N2)(H2O)3]
  • M r = 354.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m683-efi1.jpg
  • a = 11.968 (2) Å
  • b = 10.025 (2) Å
  • c = 13.798 (3) Å
  • β = 113.53 (3)°
  • V = 1517.8 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 295 (2) K
  • 0.36 × 0.28 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.902, T max = 0.944
  • 14532 measured reflections
  • 3454 independent reflections
  • 2941 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.098
  • S = 1.07
  • 3454 reflections
  • 226 parameters
  • 9 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808009938/im2060sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009938/im2060Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Innovation Science Foundation of Harbin Medical University for financial support (grant No. 060041).

supplementary crystallographic information

Comment

1,10-Phenanthroline (phen) is one of the most commonly used aromatic N,N' chelating ligands and has in form of several functionalized derivatives been widely used in the construction of supramolecular architectures.

Copper(II), zinc(II) and cadmium(II) derivatives of phen have been reported (Xu et al., 2003; Zhang et al. 1999).

As a continuation of these studies, we now report the crystal structure of the title complex, (I).

As illustrated in Fig. 1, the Mg(II) ion is surrounded by two N atoms from the phen ligand and four O atoms from three meridionally arranged H2O molecules and one sulfato group to form distorted MgN2O4 octahedron. The Mg—O and Mg—N bond lengths are in the noramal range of 2.033 (1)–2.086 (1) and 2.210 (1)–2.234 (2) Å, respectively. The units are connected by O—H···O hydrogen bonds to produce a complex three dimensional supramolecular network, shown in figure 2.

Experimental

1,10-phenanthroline (0.05 g, 0.25 mmol) was dissolved in a water-DMF mixture (1:1 v/v, 50 ml), and MgSO4 × 7 H2O (0.06 g, 0.25 mmol) was added to the solution. The resulting mixture was stirred at room temperature for 12 h and filtered. Colorless single crystals of (I) were obtained from the solution after several weeks.

Refinement

The carbon-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O-bound H atoms were located in a difference map and refined with a distance restraint of 0.85 (1) Å and the constraint Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
Molecular structure of (I), showing 30% displacement ellipsoids level.
Fig. 2.
Packing diagram of (I).

Crystal data

[Mg(SO4)(C12H8N2)(H2O)3]F000 = 736
Mr = 354.62Dx = 1.552 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11791 reflections
a = 11.968 (2) Åθ = 3.0–27.5º
b = 10.025 (2) ŵ = 0.29 mm1
c = 13.798 (3) ÅT = 295 (2) K
β = 113.53 (3)ºPrism, colorless
V = 1517.8 (6) Å30.36 × 0.28 × 0.20 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer3454 independent reflections
Radiation source: fine-focus sealed tube2941 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
Detector resolution: 10.000 pixels mm-1θmax = 27.5º
T = 295(2) Kθmin = 3.0º
ω scansh = −15→15
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)k = −12→13
Tmin = 0.902, Tmax = 0.944l = −17→17
14532 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098  w = 1/[σ2(Fo2) + (0.059P)2 + 0.2998P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3454 reflectionsΔρmax = 0.39 e Å3
226 parametersΔρmin = −0.30 e Å3
9 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mg10.13726 (4)0.25963 (5)0.47420 (4)0.02612 (13)
S1−0.06777 (3)0.22093 (3)0.57725 (3)0.02562 (11)
O1−0.17699 (10)0.15328 (13)0.50549 (11)0.0455 (3)
O1W0.19239 (10)0.09656 (11)0.57638 (9)0.0334 (2)
O20.01644 (11)0.12166 (11)0.65134 (9)0.0366 (3)
O2W0.08603 (12)0.40809 (11)0.36365 (9)0.0391 (3)
O3−0.09964 (11)0.32153 (11)0.63949 (9)0.0384 (3)
O3W0.06431 (12)0.13366 (12)0.34794 (9)0.0446 (3)
O4−0.00451 (10)0.28537 (12)0.51813 (9)0.0382 (3)
N10.32491 (12)0.24769 (13)0.47706 (11)0.0356 (3)
N20.24343 (11)0.41322 (12)0.58883 (10)0.0298 (3)
C10.36509 (19)0.1648 (2)0.42311 (17)0.0524 (5)
H10.30980.10750.37440.063*
C20.4875 (2)0.1602 (2)0.4366 (2)0.0659 (6)
H20.51240.09930.39830.079*
C30.56924 (19)0.2443 (2)0.5052 (2)0.0598 (6)
H30.65040.24240.51380.072*
C40.53087 (15)0.3344 (2)0.56323 (15)0.0440 (4)
C50.61079 (16)0.4266 (2)0.63750 (18)0.0583 (6)
H50.69300.42740.64950.070*
C60.56954 (18)0.5119 (2)0.69028 (16)0.0587 (6)
H60.62370.57110.73810.070*
C70.44359 (16)0.51409 (19)0.67458 (13)0.0443 (4)
C80.3943 (2)0.6039 (2)0.72430 (16)0.0599 (6)
H80.44410.66790.77020.072*
C90.2739 (2)0.5983 (2)0.70592 (16)0.0574 (5)
H90.24050.65890.73790.069*
C100.20141 (16)0.50001 (17)0.63810 (13)0.0407 (4)
H100.11960.49550.62710.049*
C110.40669 (13)0.33127 (16)0.54670 (12)0.0324 (3)
C120.36302 (13)0.42130 (15)0.60482 (11)0.0311 (3)
H2W10.0974 (17)0.4912 (10)0.3757 (13)0.047*
H3W10.0497 (17)0.0531 (11)0.3577 (14)0.047*
H1W10.1920 (16)0.0180 (12)0.5506 (14)0.047*
H2W20.0668 (18)0.3949 (17)0.2979 (8)0.047*
H1W20.1422 (15)0.0933 (18)0.6067 (14)0.047*
H3W20.0186 (15)0.1583 (17)0.2863 (9)0.047*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mg10.0285 (3)0.0215 (2)0.0276 (3)−0.00238 (18)0.0104 (2)−0.00030 (17)
S10.03023 (19)0.01845 (18)0.03043 (19)−0.00086 (12)0.01448 (15)−0.00115 (12)
O10.0335 (6)0.0388 (7)0.0627 (8)−0.0073 (5)0.0177 (6)−0.0200 (6)
O1W0.0371 (6)0.0265 (5)0.0364 (6)0.0044 (4)0.0145 (5)0.0030 (4)
O20.0492 (6)0.0277 (6)0.0367 (6)0.0085 (5)0.0212 (5)0.0088 (4)
O2W0.0656 (8)0.0205 (5)0.0299 (5)−0.0014 (5)0.0177 (5)0.0015 (4)
O30.0519 (7)0.0244 (5)0.0410 (6)0.0034 (5)0.0206 (5)−0.0070 (4)
O3W0.0656 (8)0.0230 (6)0.0317 (6)−0.0114 (5)0.0054 (6)−0.0001 (4)
O40.0349 (5)0.0378 (6)0.0470 (7)0.0080 (5)0.0216 (5)0.0181 (5)
N10.0396 (7)0.0303 (7)0.0425 (8)0.0008 (5)0.0223 (7)−0.0016 (5)
N20.0311 (6)0.0278 (6)0.0303 (6)−0.0003 (5)0.0121 (5)−0.0022 (5)
C10.0600 (12)0.0448 (11)0.0648 (12)0.0045 (9)0.0380 (10)−0.0088 (9)
C20.0752 (15)0.0628 (14)0.0839 (16)0.0239 (12)0.0573 (14)0.0053 (12)
C30.0444 (11)0.0698 (14)0.0799 (16)0.0211 (10)0.0403 (12)0.0285 (12)
C40.0306 (8)0.0519 (11)0.0512 (10)0.0054 (7)0.0182 (8)0.0233 (8)
C50.0272 (8)0.0749 (15)0.0629 (12)−0.0076 (9)0.0076 (9)0.0273 (11)
C60.0416 (9)0.0677 (14)0.0484 (10)−0.0247 (10)−0.0015 (9)0.0075 (10)
C70.0443 (9)0.0438 (10)0.0339 (8)−0.0147 (8)0.0041 (7)0.0006 (7)
C80.0755 (14)0.0480 (12)0.0442 (10)−0.0217 (10)0.0114 (10)−0.0191 (9)
C90.0798 (15)0.0431 (11)0.0507 (11)−0.0004 (10)0.0276 (11)−0.0178 (9)
C100.0481 (9)0.0356 (9)0.0394 (8)0.0042 (7)0.0186 (7)−0.0049 (7)
C110.0291 (7)0.0323 (8)0.0364 (8)0.0009 (6)0.0137 (6)0.0103 (6)
C120.0313 (7)0.0298 (7)0.0283 (7)−0.0041 (6)0.0078 (6)0.0036 (6)

Geometric parameters (Å, °)

Mg1—O42.0333 (13)C1—C21.403 (3)
Mg1—O2W2.0423 (12)C1—H10.9300
Mg1—O3W2.0439 (13)C2—C31.350 (3)
Mg1—O1W2.0864 (12)C2—H20.9300
Mg1—N22.2096 (14)C3—C41.401 (3)
Mg1—N12.2335 (15)C3—H30.9300
S1—O11.4545 (12)C4—C111.411 (2)
S1—O41.4659 (11)C4—C51.427 (3)
S1—O31.4702 (11)C5—C61.339 (3)
S1—O21.4929 (12)C5—H50.9300
O1W—H1W10.864 (9)C6—C71.435 (3)
O1W—H1W20.859 (19)C6—H60.9300
O2W—H2W10.850 (9)C7—C81.397 (3)
O2W—H2W20.852 (9)C7—C121.407 (2)
O3W—H3W10.848 (9)C8—C91.361 (3)
O3W—H3W20.843 (9)C8—H80.9300
N1—C11.327 (2)C9—C101.397 (3)
N1—C111.354 (2)C9—H90.9300
N2—C101.321 (2)C10—H100.9300
N2—C121.3607 (19)C11—C121.437 (2)
O4—Mg1—O2W95.32 (5)N1—C1—C2122.7 (2)
O4—Mg1—O3W102.08 (6)N1—C1—H1118.7
O2W—Mg1—O3W85.12 (5)C2—C1—H1118.7
O4—Mg1—O1W88.53 (5)C3—C2—C1119.86 (19)
O2W—Mg1—O1W174.49 (5)C3—C2—H2120.1
O3W—Mg1—O1W90.23 (5)C1—C2—H2120.1
O4—Mg1—N290.46 (5)C2—C3—C4119.51 (17)
O2W—Mg1—N286.69 (5)C2—C3—H3120.2
O3W—Mg1—N2165.60 (6)C4—C3—H3120.2
O1W—Mg1—N297.24 (5)C3—C4—C11117.25 (18)
O4—Mg1—N1162.63 (6)C3—C4—C5123.33 (18)
O2W—Mg1—N192.99 (6)C11—C4—C5119.42 (19)
O3W—Mg1—N193.80 (6)C6—C5—C4121.16 (17)
O1W—Mg1—N184.35 (5)C6—C5—H5119.4
N2—Mg1—N174.81 (5)C4—C5—H5119.4
O1—S1—O4110.49 (8)C5—C6—C7121.38 (18)
O1—S1—O3110.20 (7)C5—C6—H6119.3
O4—S1—O3109.56 (7)C7—C6—H6119.3
O1—S1—O2109.44 (8)C8—C7—C12116.99 (17)
O4—S1—O2108.51 (6)C8—C7—C6124.00 (18)
O3—S1—O2108.60 (7)C12—C7—C6119.01 (18)
Mg1—O1W—H1W1119.2 (13)C9—C8—C7120.31 (17)
Mg1—O1W—H1W2105.4 (13)C9—C8—H8119.8
H1W1—O1W—H1W2106.0 (12)C7—C8—H8119.8
Mg1—O2W—H2W1126.3 (12)C8—C9—C10118.85 (18)
Mg1—O2W—H2W2123.7 (12)C8—C9—H9120.6
H2W1—O2W—H2W2108.3 (13)C10—C9—H9120.6
Mg1—O3W—H3W1119.9 (12)N2—C10—C9123.16 (17)
Mg1—O3W—H3W2124.3 (13)N2—C10—H10118.4
H3W1—O3W—H3W2110.3 (13)C9—C10—H10118.4
S1—O4—Mg1141.98 (7)N1—C11—C4123.02 (16)
C1—N1—C11117.67 (15)N1—C11—C12117.63 (13)
C1—N1—Mg1127.63 (13)C4—C11—C12119.34 (16)
C11—N1—Mg1114.61 (10)N2—C12—C7122.64 (15)
C10—N2—C12117.98 (14)N2—C12—C11117.74 (13)
C10—N2—Mg1126.81 (11)C7—C12—C11119.62 (15)
C12—N2—Mg1115.12 (10)
O1—S1—O4—Mg1−99.19 (14)C2—C3—C4—C5179.9 (2)
O3—S1—O4—Mg1139.21 (13)C3—C4—C5—C6179.20 (19)
O2—S1—O4—Mg120.79 (15)C11—C4—C5—C6−1.3 (3)
O2W—Mg1—O4—S1166.33 (13)C4—C5—C6—C70.1 (3)
O3W—Mg1—O4—S180.20 (14)C5—C6—C7—C8−177.5 (2)
O1W—Mg1—O4—S1−9.73 (14)C5—C6—C7—C122.2 (3)
N2—Mg1—O4—S1−106.96 (14)C12—C7—C8—C91.0 (3)
N1—Mg1—O4—S1−75.4 (2)C6—C7—C8—C9−179.3 (2)
O4—Mg1—N1—C1146.11 (19)C7—C8—C9—C101.1 (3)
O2W—Mg1—N1—C1−95.33 (16)C12—N2—C10—C9−0.5 (2)
O3W—Mg1—N1—C1−10.02 (16)Mg1—N2—C10—C9−176.88 (14)
O1W—Mg1—N1—C179.84 (16)C8—C9—C10—N2−1.4 (3)
N2—Mg1—N1—C1178.93 (17)C1—N1—C11—C40.5 (2)
O4—Mg1—N1—C11−30.2 (2)Mg1—N1—C11—C4177.26 (12)
O2W—Mg1—N1—C1188.34 (11)C1—N1—C11—C12179.79 (16)
O3W—Mg1—N1—C11173.64 (11)Mg1—N1—C11—C12−3.49 (17)
O1W—Mg1—N1—C11−96.50 (11)C3—C4—C11—N1−1.1 (2)
N2—Mg1—N1—C112.60 (10)C5—C4—C11—N1179.40 (15)
O4—Mg1—N2—C10−14.19 (14)C3—C4—C11—C12179.68 (15)
O2W—Mg1—N2—C1081.12 (14)C5—C4—C11—C120.2 (2)
O3W—Mg1—N2—C10136.5 (2)C10—N2—C12—C72.7 (2)
O1W—Mg1—N2—C10−102.77 (13)Mg1—N2—C12—C7179.56 (12)
N1—Mg1—N2—C10175.12 (14)C10—N2—C12—C11−176.75 (14)
O4—Mg1—N2—C12169.30 (10)Mg1—N2—C12—C110.08 (17)
O2W—Mg1—N2—C12−95.39 (11)C8—C7—C12—N2−3.0 (2)
O3W—Mg1—N2—C12−40.0 (3)C6—C7—C12—N2177.28 (15)
O1W—Mg1—N2—C1280.72 (11)C8—C7—C12—C11176.47 (16)
N1—Mg1—N2—C12−1.39 (10)C6—C7—C12—C11−3.3 (2)
C11—N1—C1—C20.7 (3)N1—C11—C12—N22.3 (2)
Mg1—N1—C1—C2−175.54 (16)C4—C11—C12—N2−178.38 (14)
N1—C1—C2—C3−1.4 (3)N1—C11—C12—C7−177.16 (14)
C1—C2—C3—C40.8 (3)C4—C11—C12—C72.1 (2)
C2—C3—C4—C110.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H2W1···O3i0.850 (9)1.891 (11)2.7170 (17)163.8 (16)
O3W—H3W1···O2ii0.848 (9)1.906 (10)2.7375 (17)166.2 (17)
O1W—H1W1···O1ii0.864 (9)1.862 (10)2.7235 (17)174.8 (17)
O2W—H2W2···O2iii0.852 (9)1.873 (10)2.7232 (17)175.4 (19)
O1W—H1W2···O20.859 (19)1.862 (19)2.7030 (17)166.0 (19)
O3W—H3W2···O3iii0.843 (9)1.965 (10)2.7961 (19)168.5 (17)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2060).

References

  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, L., Wang, E.-B., Peng, J. & Huang, R.-D. (2003). Inorg. Chem. Commun.6, 740–743.
  • Zhang, C., Yu, K., Wu, D. & Zhao, C. (1999). Acta Cryst. C55, 1815–1817.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography