PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 May 1; 64(Pt 5): o826.
Published online 2008 April 10. doi:  10.1107/S1600536808009045
PMCID: PMC2961339

Pyromellitic acid–sarcosine (1/2)

Abstract

The title compound, C10H6O8·2C3H7NO2, crystallizes as an adduct with the acid and amino acid mol­ecules in their neutral forms. The asymmetric unit contains one half of a centrosymmetric pyromellitic acid mol­ecule and one sarcosine mol­ecule. The sarcosine has the amine group protonated and the carboxyl group deprotonated, as is usual for amino acids (zwitterionic form). The pyromellitic acid mol­ecules retain the four carboxyl H atoms with the carboxyl groups rotated out of the ring plane [O—C—C—C torsion angles = 24.1 (3) and 61.6 (2)°]. There is a three-dimensional hydrogen-bond network linking the mol­ecules.

Related literature

For related compounds, see: Yaghi et al. (1997 [triangle]); Arora & Pedireddi (2003 [triangle]); Rochon & Massarweh (2001 [triangle]); Kumagai et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0o826-scheme1.jpg

Experimental

Crystal data

  • C10H6O8·2C3H7NO2
  • M r = 432.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0o826-efi7.jpg
  • a = 8.8894 (3) Å
  • b = 5.4118 (2) Å
  • c = 20.2205 (7) Å
  • β = 104.388 (2)°
  • V = 942.25 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 293 (2) K
  • 0.47 × 0.10 × 0.07 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.915, T max = 0.998
  • 16656 measured reflections
  • 2351 independent reflections
  • 1643 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.115
  • S = 1.01
  • 2351 reflections
  • 166 parameters
  • Only H-atom coordinates refined
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus (Bruker, 2003 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808009045/dn2326sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009045/dn2326Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) under project POCI/FIS/57876/2004.

supplementary crystallographic information

Comment

1,2,4,5-benzenetetracarboxylic acid (pyromellitic) is frequently chosen as a building block for crystal engineering due to its predictable properties and interesting supramolecular properties: It has provided three-dimensional porous networks (Yaghi et al., 1997), host–guest systems (Arora & Pedireddi, 2003), mixed metallic systems (Rochon & Massarweh, 2001) and complex magnetic behaviours (Kumagai et al., 2003). In an attempt to synthesize a low dimensional compound with copper, 1,2,4,5-benzenetetracarboxylic acid and sarcosine (as an auxiliary ligand), we have obtained the title compound, (I).

The midpoint of the acidic molecule lies on an inversion centre thus these molecules exhibit a Ci symmetry (Fig. 1). All four carboxylic groups retain the hydrogen atom and rotate around the C—C bond. Torsion angles O1—C1—C2—C4 24.1 (3)° and C4—C3—C5—O4 61.6 (2)° show different degrees of rotation. Sarcosine (N-methyl-glycine) crystallizes in the zwitterionic form with the amine group protonated and the carboxylic group deprotonated. The molecule when viewed along the C6—C7 bond shows the oxygen atoms anti to each other and the nitrogen atom synperiplanar to O6 [O6—C6—C7—N1 4.9 (2)°]. There is an extensive three-dimensional newtork of hydrogen bonds linking the molecules. Sarcosine molecules are assembled in chains via the N1—H1A···O6 bond (Table 1), running along the b axis. The chains are all interconnected through the remaining H bonds, since each sarcosine molecule is H-bonded to four benzenetetracarboxylic neighbours, (Fig. 2).

Experimental

0. 5 mmol of copper hydroxyfluoride were added to a 20 ml warmed ethanolic solution containing 1.5 mmol of 1,2,4,5-benzenetetracarboxylic acid and 1.5 mmol of sarcosine. After a few weeks, transparent, colourless crystals could be isolated from the solution.

Refinement

H atoms coordinates were located from a difference Fourier map and refined freely. The Uiso(H) were restrained to be 1.2Ueq(parent atom).

Figures

Fig. 1.
View of the title compound (I). Displacement ellipsoids are drawn at the 50% level. H atoms are represented as small spheres of arbitrary radii. H bond is represented as dashed line. [Symmetry code: (i) 1-x, 1-y, 2-z].
Fig. 2.
Packing view of the title compound down the b axis. Hydrogen bonds are depicted as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (ii) -x, y-1/2, -z+3/2; (iii) -x, y+1/2, -z+3/2; (iv) -x+1, y+1/2, ...

Crystal data

C10H6O8·2C3H7NO2F000 = 452
Mr = 432.34Dx = 1.524 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2870 reflections
a = 8.8894 (3) Åθ = 2.4–23.7º
b = 5.4118 (2) ŵ = 0.13 mm1
c = 20.2205 (7) ÅT = 293 (2) K
β = 104.388 (2)ºPrism, colourless
V = 942.25 (6) Å30.47 × 0.10 × 0.07 mm
Z = 2

Data collection

Bruker APEX CCD area-detector diffractometer2351 independent reflections
Radiation source: fine-focus sealed tube1643 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.047
T = 293(2) Kθmax = 28.4º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 2000)h = −11→11
Tmin = 0.915, Tmax = 0.998k = −7→7
16656 measured reflectionsl = −27→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041Only H-atom coordinates refined
wR(F2) = 0.115  w = 1/[σ2(Fo2) + (0.056P)2 + 0.2509P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2351 reflectionsΔρmax = 0.25 e Å3
166 parametersΔρmin = −0.21 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.19992 (15)0.1100 (3)0.89313 (8)0.0531 (4)
O20.43230 (15)−0.0346 (2)0.88997 (7)0.0415 (4)
H20.389 (3)−0.163 (4)0.8612 (11)0.050*
C10.33933 (19)0.1205 (3)0.90904 (8)0.0291 (4)
C20.42466 (17)0.3192 (3)0.95451 (8)0.0236 (3)
C30.57683 (17)0.3865 (3)0.95565 (8)0.0239 (3)
C40.65079 (18)0.5655 (3)1.00139 (8)0.0256 (3)
H10.758 (2)0.621 (3)1.0018 (9)0.031*
C50.66506 (19)0.2833 (3)0.90749 (8)0.0284 (4)
O40.78636 (14)0.1742 (3)0.92796 (7)0.0418 (4)
O30.61224 (16)0.3342 (3)0.84210 (6)0.0382 (3)
H30.515 (2)0.430 (4)0.8318 (11)0.046*
O50.35723 (14)0.5924 (2)0.81422 (6)0.0377 (3)
O60.12981 (14)0.7404 (2)0.75521 (6)0.0365 (3)
C60.23381 (18)0.5845 (3)0.76612 (8)0.0261 (4)
C70.21727 (19)0.3602 (3)0.71983 (9)0.0284 (4)
H7A0.205 (2)0.202 (4)0.7448 (9)0.034*
H7B0.310 (2)0.343 (3)0.7009 (9)0.034*
N10.07624 (17)0.3848 (3)0.66375 (8)0.0283 (3)
H1A−0.004 (2)0.404 (4)0.6805 (10)0.034*
H1B0.087 (2)0.516 (4)0.6393 (10)0.034*
C80.0406 (3)0.1733 (4)0.61676 (12)0.0437 (5)
H8A−0.047 (3)0.212 (4)0.5816 (12)0.052*
H8B0.123 (3)0.159 (4)0.5931 (11)0.052*
H8C0.033 (3)0.037 (5)0.6395 (12)0.052*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0296 (7)0.0604 (10)0.0672 (10)−0.0132 (6)0.0080 (6)−0.0350 (8)
O20.0364 (7)0.0329 (7)0.0517 (8)−0.0029 (6)0.0042 (6)−0.0215 (6)
C10.0313 (9)0.0282 (9)0.0271 (8)−0.0057 (7)0.0061 (7)−0.0040 (7)
C20.0250 (8)0.0231 (8)0.0213 (8)−0.0009 (6)0.0030 (6)−0.0020 (6)
C30.0240 (7)0.0247 (8)0.0227 (8)0.0016 (6)0.0054 (6)−0.0013 (6)
C40.0227 (7)0.0282 (9)0.0255 (8)−0.0026 (6)0.0052 (6)−0.0021 (7)
C50.0275 (8)0.0283 (9)0.0298 (9)−0.0015 (7)0.0079 (7)−0.0059 (7)
O40.0333 (7)0.0487 (8)0.0437 (8)0.0126 (6)0.0105 (6)−0.0056 (6)
O30.0410 (7)0.0487 (8)0.0271 (7)0.0070 (6)0.0128 (5)−0.0032 (6)
O50.0416 (7)0.0326 (7)0.0321 (7)0.0032 (6)−0.0034 (5)−0.0080 (5)
O60.0374 (7)0.0330 (7)0.0393 (7)0.0073 (6)0.0098 (6)−0.0068 (6)
C60.0295 (8)0.0253 (8)0.0242 (8)−0.0017 (7)0.0079 (6)−0.0009 (7)
C70.0292 (9)0.0258 (9)0.0274 (9)0.0031 (7)0.0019 (7)−0.0028 (7)
N10.0255 (7)0.0285 (8)0.0292 (8)0.0006 (6)0.0036 (6)−0.0038 (6)
C80.0486 (12)0.0370 (11)0.0390 (11)0.0027 (10)−0.0015 (10)−0.0142 (9)

Geometric parameters (Å, °)

O1—C11.202 (2)O5—C61.273 (2)
O2—C11.302 (2)O6—C61.230 (2)
O2—H20.93 (2)C6—C71.518 (2)
C1—C21.493 (2)C7—N11.473 (2)
C2—C4i1.390 (2)C7—H7A1.02 (2)
C2—C31.396 (2)C7—H7B0.995 (19)
C3—C41.387 (2)N1—C81.471 (2)
C3—C51.502 (2)N1—H1A0.87 (2)
C4—C2i1.390 (2)N1—H1B0.88 (2)
C4—H10.997 (18)C8—H8A0.94 (2)
C5—O41.209 (2)C8—H8B0.97 (2)
C5—O31.318 (2)C8—H8C0.88 (2)
O3—H30.98 (2)
C1—O2—H2118.4 (14)O5—C6—C7115.53 (14)
O1—C1—O2125.37 (16)N1—C7—C6109.64 (13)
O1—C1—C2122.06 (16)N1—C7—H7A106.5 (11)
O2—C1—C2112.57 (14)C6—C7—H7A112.0 (10)
C4i—C2—C3119.49 (14)N1—C7—H7B109.9 (11)
C4i—C2—C1117.78 (14)C6—C7—H7B110.5 (11)
C3—C2—C1122.70 (14)H7A—C7—H7B108.2 (15)
C4—C3—C2119.36 (14)C8—N1—C7115.63 (15)
C4—C3—C5117.05 (14)C8—N1—H1A106.3 (13)
C2—C3—C5123.53 (14)C7—N1—H1A109.5 (13)
C3—C4—C2i121.14 (14)C8—N1—H1B107.4 (13)
C3—C4—H1120.5 (10)C7—N1—H1B108.1 (13)
C2i—C4—H1118.3 (11)H1A—N1—H1B109.8 (18)
O4—C5—O3120.72 (15)N1—C8—H8A108.6 (14)
O4—C5—C3121.66 (15)N1—C8—H8B108.0 (14)
O3—C5—C3117.36 (14)H8A—C8—H8B103.5 (18)
C5—O3—H3113.4 (12)N1—C8—H8C110.2 (16)
O6—C6—O5125.48 (16)H8A—C8—H8C115 (2)
O6—C6—C7118.98 (15)H8B—C8—H8C111 (2)
O1—C1—C2—C4i24.1 (3)C5—C3—C4—C2i176.64 (15)
O2—C1—C2—C4i−155.56 (15)C4—C3—C5—O461.6 (2)
O1—C1—C2—C3−157.90 (18)C2—C3—C5—O4−121.1 (2)
O2—C1—C2—C322.4 (2)C4—C3—C5—O3−112.73 (18)
C4i—C2—C3—C40.7 (3)C2—C3—C5—O364.5 (2)
C1—C2—C3—C4−177.23 (15)O6—C6—C7—N14.9 (2)
C4i—C2—C3—C5−176.47 (15)O5—C6—C7—N1−175.62 (15)
C1—C2—C3—C55.5 (3)C6—C7—N1—C8−176.75 (17)
C2—C3—C4—C2i−0.8 (3)

Symmetry codes: (i) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O5ii0.93 (2)1.61 (2)2.5216 (18)166 (2)
O3—H3···O50.98 (2)1.62 (2)2.6026 (18)179 (2)
N1—H1A···O6iii0.87 (2)2.11 (2)2.854 (2)143.4 (17)
N1—H1A···O1iv0.87 (2)2.28 (2)2.7262 (19)111.8 (15)
N1—H1B···O4v0.88 (2)2.15 (2)2.917 (2)145.5 (16)

Symmetry codes: (ii) x, y−1, z; (iii) −x, y−1/2, −z+3/2; (iv) −x, y+1/2, −z+3/2; (v) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2326).

References

  • Arora, K. K. & Pedireddi, V. R. (2003). J. Org. Chem.68, 9177–9185. [PubMed]
  • Bruker (2003). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Kumagai, H., Chapman, K. W., Kepert, C. J. & Kurmoo, M. (2003). Polyhedron, 22, 1921–1927.
  • Rochon, F. D. & Massarweh, G. (2001). Inorg. Chim. Acta, 314, 163–171.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Yaghi, O. M., Davis, C. E., Li, G. M. & Li, H. L. (1997). J. Am. Chem. Soc.119, 2861–2868.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography